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Highlights of the findings: 

 Strain-softening process in the FEM is localised in a single element and cannot propagate;   

 FE results in presence of strain-softening are highly mesh sensitive;   

 Localisation effects related to material strain-softening are not present with the SPH method;   

 Size of the softening zone was defined by the smoothing length and was increasing with the 

increasing smoothing length;  

 For a fixed smoothing length h, the stain softening was independent of the particle density;   

 

Highlights (for review)
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Abstract 

Within the framework of continuum damage mechanics (CDM), mechanical loading leads to material 

damage and consequent degradation of material properties.  This can result in strain softening behaviour, 

which when implemented as a local model in the finite element (FE) method, leads to an ill posed boundary 

value problem, resulting in significant mesh sensitivity of the solution.  It is well-known that the addition of 

a characteristic length scale to CDM models, a non-local approach, maintains the character of the governing 

equations.  In this paper, the similarities between the Smooth Particle Hydrodynamic (SPH) method and 

non-local integral regularisation methods are discussed. A 1D dynamic strain softening problem is used as 

the test problem for a series of numerical experiments, to investigate the behaviour of SPH.  An analytical 

solution for the test problem is derived, following the solution for a 1D stress state derived by Bažant and 

Belytschko in 1985.  An equivalent SPH model of the problem is developed, using the stable Total-Lagrange 

form of the method, combined with a local bi-linear elastic-damage strength model.  A series of numerical 

experiments, using both SPH and FE solvers, demonstrate that the width of the strain softening region is 

controlled by the element size in FE, but in SPH it is controlled by the smoothing length rather than the 

inter-particle distance, which is the analogous to the element size in the FE method.  This investigation 

indicates that the SPH method is inherently non-local numerical method and suggests that the SPH 

smoothing length should be linked to the material characteristic length scale in solid mechanics 

simulations.   

 

Keywords: Smoothed Particle Hydrodynamics, SPH, nonlocal regularisation, strain softening, instability, 

continuum damage, brittle materials 
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1 Introduction 

Within the framework of local continuum damage mechanics (CDM), material behaviour under mechanical 

loading includes degeneration of material properties due to damage.  Material behaviour is typically 

described by local models, which evaluate state and internal variables at a single location in a numerical 

model with, consequently, a limited ability to take into account the non-local effects occurring in a material 

including damage.  Within the framework of local CDM, material dynamic strain softening due to damage 

leads to an ill-posed initial boundary value problem where the governing hyperbolic differential equations 

become elliptic, this leads to instability of the continuum solution with an infinite number of bifurcated 

branches.  In transient nonlinear finite element (FE) codes, this material softening leads to a tangent 

stiffness tensor that is not positive-definite, resulting in numerical instability.  This instability manifests 

itself as non-physical localised deformation with post-bifurcation mesh dependency  (the behaviour is 

mesh-sensitive).   

It is well-known that the addition of a characteristic length scale to constitutive models maintains the 

character of the governing equations in the material softening (post-bifurcation) deformation regime.  The 

characteristic length scale can be taken into account either in the form of spatial gradients (e.g. Dillon and 

Kratochvil (1970), Aifantis (1984, 1995), Zbib at al. (1992), Fleck et al. (1994), Abu Al-Rub et al. (2004), 

Bammann and Solanki (2010), and Solanki and Bammann (2010b)) or integral nonlocal terms (e.g. Pijaudier-

Cabot and Bažant (1987), Leblond et al. (1994), Tvergaard and Needleman (1995, 1997), and Enakoutsa et 

al. (2007, 2012)).  Furthermore, a non-local approach based on the introduction of length scale(s) provides 

a method for models to capture relevant aspects of the underlying physics (sub continuum scale effects) of 

materials.   

Smoothed Particle Hydrodynamics (SPH) is a meshless particle method initially proposed by Lucy (1977) and 

Gingold and Monaghan (1977) for modelling, as the name states, hydrodynamics.  The method was 

extended to modelling of solids with defined strength by Libersky at al. (1991, 1993).  As a meshless 

method SPH does not require a structured grid,  with the motion of the continuum  approximated by 

motion of discrete material points (particles) with no fixed connectivity.  The balance equation for mass, 

linear momentum and energy are discretised in space with kernel interpolation, where field variables at a 

particle location are approximated as a weighted (smoothed) sum of field values at the neighbouring 

particles.  The finite domain of the kernel (smoothing) function, often called the smoothing length, defines 

the range of influence of an individual particle.  The significant difference to the FE method is that the 

kernel interpolation does not satisfy the Kronecker delta condition, i.e. (x )i j ijW  , and that the 

interpolation domains are overlapping resulting in a non-unique approximation of the field variables (for 

details see, for instance, Libersky at al. (1991, 1993) and Swegle at al. (1994)).   

The purpose of this study was to investigate if SPH is by nature a nonlocal method, capable of overcoming 

difficulties related to material softening without any additional regularisation measures.  In this 

investigation a local damage model resulting in material strain-softening was used in a stable Total-

Lagrange SPH code, Vignjevic at al. (2006). The investigation was done by considering a simple uniaxial 

wave propagation problem in a symmetrically loaded homogeneous bar, in presence of damage induced 

strain-softening, which is defined by Bažant and Belytschko (1985).  They derived an exact solution for 

given initial and boundary conditions for stress wave propagation and demonstrated that for the FE spatial 

discretisation combined with a strain-softening material, deformation localised in a single element.  With 
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strain localised in the element undergoing strain-softening, stress wave propagation through the element 

stopped and the rest of the bar unloaded elastically.  Consequently the numerical results were dependent 

on the element size, i.e. showed pronounced mesh sensitivity.   

The investigation presented in this paper demonstrates that this does not occur when SPH is used to 

analyse the same problem.  It was found that stress wave propagation continues in the presence of strain-

softening and the waves continue to propagate within the localisation zone.  Furthermore, it is shown that 

in this problem the smoothing length represents a damage related length scale independent of the particle 

spacing (spatial discretisation density).  This leads to the observation that the SPH method has inherent 

non-local properties.   

 

 

2 Theoretical Background of Strain-Softening 

2.1 Continuum Damage Mechanics 

According to CDM theory, the properties of an isotropic material, including damage, have a homogeneous 

distribution within a representative volume element (RVE). Damage is defined by a scalar damage variable 

 , which has a value between zero and one.      corresponds to no damage and     corresponds to 

complete material failure.   

One possible physical interpretation of damage is as a reduction in effective load carrying area within the 

RVE, as originally proposed by Kachanov (1958).  In this case,   is expressed as the ratio of damaged 

surface area,    , to the original undamaged surface area,   :   

 
  

   
  

 (2-1) 

This interpretation of damage leads to a constitutive equation expressed in terms of effective stress   , see 

Rabotnov (1968). The relationship between the true stress and effective stress can then be derived from a 

definition of effective load carrying area             and the force equilibrium,           as:   

     
 

     
 . (2-2) 

Making use of the effective stress, combined with equivalent strain principle, Hooke’s law can be expressed 

in two equivalent forms, i.e.        or       , where    is the effective Young’s modulus and e is the 

elastic strain.  Note that the true stress   results in the same elastic strain for a damaged material as    for 

the virgin material.  This provides a relationship between   and    : 

 
1 , (1 )

E
E E

E
       (2-3) 
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2.2 Loss of Uniqueness 

The development of localised deformation is caused by a physical process occurring on a sub-continuum 

scale.  The process is defined by the initiation, growth and interaction of cracks and voids within the 

material which finally lead to complete material fracture.  In this investigation we use the definition of 

localization proposed by Rudnicki and Rice (1975): “localization is defined as instability in the macroscopic 

constitutive description of inelastic deformation of the material”.  This instability allows the constitutive 

equations of an originally homogeneous material to reach a bifurcation point and become unstable.  

Consequently the deformation localises and becomes non-uniform, while outside this instability zone the 

material continues to be stable, Rudicki (1975).   

When the FE method, combined with a conventional local constitutive equation, is applied to model the 

response of a softening material the results are nonphysical and mesh dependent.  This is a consequence of 

the ill-posed description of the governing differential equations in the material softening zone.  In static 

problems, the partial differential equations (PDEs) change from elliptic to a hyperbolic in the softening 

zone, while in dynamic problems they change from hyperbolic to elliptic.   

A material is considered to be stable and stay in equilibrium, when the double contraction of stress-rate      

and strain-rate      is positive.  This criterion is also called general bifurcation criterion, Neilsen (1993), and is 

true as long as the stress-strain relationship of the material has a positive slope.   

            (2-4) 

In this study we are considering the transient dynamic response of a material so the constitutive equations 

are written in the rate form, with a piecewise linear relationship between stress and strain rates 

established through the material tangent stiffness tensor       as:   

                (2-5) 

Therefore, the inequality (2-4) reads: 

                 (2-6) 

The material becomes unstable when the material reaches its limiting point, which occurs when the 

condition (2-6) is violated.  This criterion defines the bifurcation point and is mathematically expressed as:   

                . (2-7) 

The bifurcation criterion is reached when the tangent stiffness tensor becomes singular (not positive-

definite) anymore:   

              (2-8) 

2.3 Strain-Softening 

The test problem chosen to illustrate nonlocal properties of SPH is based on the 1D stress state dynamic 

softening problem for which Bažant and Belytschko (1985) derived an analytical solution.  To make the 
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problem more suited to analysis codes a 1D strain was assumed, then a new analytical solution developed 

following procedure presented in aforementioned work.   

Figure 1 shows the stress-strain curve of a general strain-softening material, as considered by Bažant and 

Belytschko (1985).  For the linear elastic behaviour between the points O and P, the material stiffness is 

defined by Young’s modulus  .  The maximum strength   
  is reached for the strain   .  The curve in the 

strain softening zone (between points P and F) is defined by the function     , and the slope of this part of 

the curve,      , is negative.  Function      reaches a zero stress for a finite strain   or an asymptotic strain 

   .  In the original paper of Bažant and Belytschko (1985), unloading        and reloading       is 

considered to be elastic and occur with the undamaged Young’s modulus  .   

 

NEAR Figure 1 

Figure 1  Stress-strain diagram of softening material Bažant and Belytschko (1985) 

The geometry and the loading conditions of the problem are shown in Figure 2.  The bar length is   , 

material density per unit length is   and the coordinate system is chosen so that the longitudinal 

coordinate   is measured from the bar centre .  The bar is loaded at both ends with a constant velocity  , 

applied in opposite directions.  

 

NEAR Figure 2 

Figure 2: Geometry and loading of softening bar, Bažant and Belytschko (1985) 

Two tensile step waves are generated in the bar, one travelling from the right boundary in the negative  -

direction and the other travelline from the left boundary in the positive  -direction.  These two step waves 

of constant strain meet in the centre of the bar (   ) at time       .  At this point the strain doubles 

instantaneously, and the midsection zone of the bar enters the strain-softening regime.   

For elastic material response the wave equation is hyperbolic:   

2 2
2

2 2e

u u
c

x t

 


   (2-9) 

where ec is the elastic wave speed, which for the 1D state of strain, is:   

 
   

1

1 2 1
e

E
c



  




  . (2-10) 

The longitudinal displacement function for the linear elastic response is derived from appropriate initial and 

boundary conditions:   

 
            

   

  
      

   

  
  (2-11) 

where the expressions in the brackets     need to be positive-definite.  The corresponding strain is obtained 

as:   
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x

e e e

u v x L x L
H t H t

x c c c


      
        
       (2-12) 

where      is the Heaviside step function.  The stress state induced by this deformation is:   

  
   

1

1 2 1
x x

E 
 

 




 
 (2-13) 

This assumption of linear elasticity (2-11) only holds for       , before the centre of the bar enters the 

strain-softening regime at response time       , when the two stress step waves meet.  At the centre of 

the bar, the slope of the stress-strain curve (the strain in the bar satisfies the condition:          ) 

becomes negative, i.e.        , and the wave speed   becomes imaginary.  Consequently, the equation 

of motion in the softening domain becomes an elliptic PDE:   

 
  
   

   
 
   

   
               

     

 
 (2-14) 

Theoretically, the softening is limited to an area of zero width at    .  So a discontinuity with a 

displacement jump develops at this point, giving a difference in magnitude of strain             .  

Strain increases towards infinity and stress drops to zero within the softening zone. Release waves are 

generated from this point and propagate into the bar. 

The infinite strain in the softening domain can be expressed by the Dirac Delta function      as: 

 
 4x

e

L
vt x

c
     (2-15) 

The solution for the strain field outside the softening zone,         and    , (consequently in     

part of the bar, due to symmetry of the problem), is then:   

 

 4x e

e e e

v x L L x
H t H t c t Lv x

c c c
 

     
         

    
  (2-16) 

Following Bažant and Belytschko (1985), this analytical solution was used to derive a comparison between 

an elastic (      ) and a strain-softening (           wave propagation problem.   

Figure 3 to Figure 6 show the solutions for longitudinal displacement, strain and stress along the bar at time 

         , for both the elastic and strain-softening responses of a local continuum.  The elastic solution 

represents continuous wave propagation after superposition of the waves. The results for the strain-

softening solution show clearly the consequences of strain-softening; a displacement discontinuity 

develops after the superposition in the localisation zone at     and this zone localises in an area of zero 

width (see Figure 3).  This discontinuity cannot propagate outside this zone, as the type of PDE in this zone 

has changed to elliptic and interaction with areas    , which are governed by hyperbolic PDEs, is not 

possible.  Consequently strain grows to infinity, as illustrated in Figure 4, and simultaneously stress in the 

localisation zone drops to zero, see Figure 5.  Outside the localisation zone, the bar unloads as release 

waves travel to the bar ends.  One can observe that the softening zone effectively acts as a free boundary.   
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NEAR Figure 3 

 

NEAR Figure 4 

Figure 3: Elastic local and nonlocal solutions for 

normalised longitudinal displacement at           

Figure 4: Elastic local and nonlocal solutions for 

normalised longitudinal strain at           

  

  

 

NEAR Figure 5 

 

NEAR Figure 6 

Figure 5: Elastic local and nonlocal solutions for 

normalised longitudinal stress at           

Figure 6: Internal energy history for the local and 

nonlocal solutions 

 

3 Main Aspects of the Smoothed Particle Hydrodynamics (SPH) Method 

as Nonlocal Regularisation Method 

3.1 Nonlocal Regularisation 

In a local theory stress only depends on the deformation history of a single point  .  A nonlocal theory 

considers additionally the influence of the deformation of surrounding points,  , in a representative volume 

element (RVE).  This is done by substituting the local variable      by a weighted average       of the 

variable in the point’s spatial neighbourhood.  

Nonlocal integral theory aims to describe spatial interactions with weighted spatial averages.  A 

transformation rule is defined by an integral over a RVE domain, denoted as   in the integral below:   

 

                   

 

 (3-1) 

where        is a weighting function for a local state variable in the spatial domain  .   

The size of the RVE is quantified by a characteristic length  , also called the internal length.  It is understood 

as a material property which depends on the size of material heterogeneities on the micro-scale.  An 

example of a common weighting function        is the Gaussian function:   

 
              

 

         
     

  

   
  (3-2) 

With increase in distance from the point  , the influence of the surrounding material reduces and reaches 

zero at the boundaries of the RVE.  This averaging process is often called smoothing.   
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3.2 Nonlocal Aspect of the SPH Method 

Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian particle method, where the motion of a 

continuum is described by the movement of a finite number of discrete particles, which are used in the 

spatial discretisation of the state variables, Lucy (1977), Gingold and Monaghan (1977).  Instead of a mesh, 

SPH uses kernel interpolation to approximate the field variables at any point in a domain.  For instance, an 

estimate of the value of a function      at the location  , is given in a continuous form by an integral of the 

product of the function and a kernel (weighting) function            :   

 

                           

 

 (3-3) 

where the angle brackets     denote a kernel approximation,   is a parameter that defines the size of the 

kernel support (also known as the smoothing length), and    is a new independent variable.   

The kernel function (3-3) usually has the following properties:   

- Compact support, which means that it is equal to zero everywhere except within a finite domain.  In 

conventional SPH, this domain is taken to be a sphere with a radius of twice the smoothing length,  , 

i.e. the domain includes all the points within a distance of two smoothing lengths,  , from the point    

(see Figure 7): 

                                 (3-4) 

- Normalised: 

 

               

 

   (3-5) 

These requirements, formulated by Lucy (1977), ensure that the kernel function reduces to the Dirac delta 

function when   tends to zero: 

    
   

                        (3-6) 

 So therefore, it follows that: 

    
   

            (3-7) 

If the function      is only known at   discrete points, the integral in equation (3-3) can be approximated 

by a summation:   

          

                            

 

  
  

  

 

   

                  
(3-8) 
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In the equation above, the subscripts   and   denote particle numbers,    and    are, respectively, the 

mass and the density of particle  ,   is the number of neighbours of particle   (number of particles that 

interact with particle  , i.e. within the support of the kernel), and       is the volume associated to the 

point or particle  .  Equation (3-8) constitutes the basis of the SPH method, where the value of a field 

variable at particle   is approximated by summing the weighted field values from a set of neighbouring 

particles, denoted by subscript  .   

In the SPH literature, the term particles is misleading as these particles in fact have to be thought of as 

interpolation points rather than mass elements.  Furthermore it is important to observe that the kernel 

interpolation does not satisfy the Kronecker delta condition, i.e. (x )i j ijW   and that the interpolation 

domains are overlapping resulting in a non-unique approximation of the field variables (for details see, for 

instance, Libersky at al. (1991, 1993) and Swegle at al. (1994)).   

 

 

NEAR Figure 7 

Figure 7: Set of neighbouring particles 

Using basic properties of the kernel approximation, a discrete form of a spatial derivative approximation 

can be derived as:   

 
          

  

  
 

                     (3-9) 

The SPH approximations of field variables are values smoothed over the kernel function domains or, in its 

discrete form, over a number of neighbours for a given particle  .  This kernel smoothing/interpolation 

gives the SPH method nonlocal properties.  More specifically, the density, stress and velocity fields in SPH 

are smoothed (discretised) using the kernel interpolation.  Furthermore, in SPH the constitutive equations 

are integrated for all particles, i.e. all particles carry information about density, velocity, stress and internal 

state variables, which makes the method collocational.  In FE, based on the isoparametric element 

formulation, constitutive equations are integrated at the Gauss points and the discrete values for the 

velocity field are determined for nodal points, which makes this method non-collocational.   

Although frequently used, the conventional SPH method based on an Eulerian kernel, e.g. Libersky at al. 

(1993), suffers from an instability commonly known as the ‘tensile instability’, which was first investigated 

by Swegle (1994).  This instability manifests itself as the development of unphysical fractures or as clumping 

together of particles, when the material is subjected to tension.  Belytschko at al. (2000) and Vignjevic at al. 

(2006) showed that the tensile instability associated with the use of an Eulerian kernel can be avoided by 

using a Total Lagrangian kernel.   An outline of a stable Total Lagrangian form of SPH, used in this work, is 

given below, whilst the full information about this form of SPH can be found in Vignjevic at al. (2006).   

In the Total Lagrangian formulation the balance equations are written in the initial configuration and 

expressed in terms of material coordinates.  The Total Lagrangian SPH form of the discretised balance 

equations are given in Table 3.1, Vignjevic at al. (2006).  These equations are discretised using the Total 
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Lagrangian kernel function and its derivatives are evaluated in the initial configuration, in terms of the 

initial coordinates   
  and   

  of the   and   particles.   

Table 3.1  Balance equations in continuum and SPH discrete forms Vignjevic at al. (2006)  

 

NEAR Table 3.1 

 

Where: F  is deformation gradient, t  deJ  F  is the Jacobian of deformation gradient,   is material 

density, u  is displacement, P  is first Piola-Kirchhoff stress, b  is a body force per unit mass, e  is internal 

energy.  The superscript 0 in the equation above indicates initial configuration and dot above a variable 

denotes time derivative.   

This SPH discretisation results in the following equation for the deformation gradient, Vignjevic at al. 

(2006):   

   0

0 0 0

0
1

,
i

np
j

i i j i jx
j j

m
W h



    F v v x x
  (3-10) 

A normalised corrected version of SPH based on cubic B-spline kernel function was used (for more details, 

see Vignjevic at al. (2000)).  These semi-discretised equations are integrated in time using a central 

difference integration scheme (explicit time integration).  The update of particle positions was performed 

using a smoothed velocity (XSPH), Randles and Libersky (1996).   

 

4 Numerical Experiments for the Evaluation of the SPH Method 

The objective of the numerical experiments was to investigate the behaviour of the SPH method, when 

used with a local CDM material model with strain-softening.  Then to compare the results with equivalent 

analyses performed with the FE method.  The tests were conducted with an in-house Total-Lagrangian SPH 

code (MCM) and with the FE code DYNA3D, Lin (2004), available at Cranfield University.  The 1D strain, 

wave propagation problem, described in section 2.3 was used as the benchmark example.    

4.1 Material Model   

An isotropic elastic material model with damage was used in this study, with a stress-strain relationship is 

illustrated in Figure 8.  The onset of strain-softening occurs when strain reaches the damage initiation strain 

  , which corresponds to the maximum strength.  After the onset of strain-softening, material strength 

reduces gradually until it reaches zero at a strain equal to the critical failure strain   .   

 

 

NEAR Figure 8 

Figure 8: Material model with strain-softening implemented into the MCM SPH code and FE code DYNA3D   
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The evolution of the damage variable was defined to give linear stress-strain behaviour following the onset 

of damage growth. In the model,   is the Young’s modulus of a virgin material, which defines material 

linear elastic behaviour.  Material stiffness in the softening regime is defined by the tangent stiffness 

(softening part of the stress strain curve),   .  Material loading/unloading response in the softening regime 

was defined using the secant stiffness, denoted as E E  .  The secant stiffness is equivalent to virgin 

material Young’s modulus.  The parameters    and    define the initiation and critical failure strains, 

respectively, and    denotes the current strain.   

The stiffness of the softening material was defined by the slope of the strain-softening part of the stress-

strain curve:   

 
   

    
     

 (4-1) 

Using equation (2-2) damage variable   can then be expressed as:   

 *

* )(

f

f i

i  


  





 

 

(4-2) 

For *

i  , 0   and for *

f  , i.e. at the point of material failure 1f  .   

4.2 Numerical Test Setup 

A number of numerical tests were performed to illustrate the inherent nonlocal properties of the SPH 

method, where the smoothing length, in addition to its interpolation meaning, represents material 

characteristic length.   

The bar, used in the numerical experiments, has an overall length of           and a square cross 

section.  In the SPH models symmetry planes are used to properly enforce the boundary conditions on the 

long edges  The origin of the coordinate system was located in the centre of the bar with the   axis aligned 

with the bar.  All degrees of freedom except for the longitudinal direction are restricted in order to ensure 

uniaxial strain conditions.  The material input data used in the simulations is given in Table 4.1.   

Table 4.1: Input data for isotropic CDM model with linear strain-softening for FE (DYNA3D) and SPH (MCM) codes 

 

The bar was loaded in tension by applying constant velocity in opposite directions to its ends.  In order to 

induce the softening regime in material, the applied velocity has to be between      
  

 
    and 

          .  Consequently, for the elastic wave speed                  , calculated from (2-12), 

the constant velocity applied in all simulations is                  .   

 

NEAR Table 4.1 
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To provide a reference data set for comparison with SPH, and to illustrate the mesh dependency of the FE 

model, the bar problem was simulated with the nonlinear transient FE code DYNA3D, using the local 

constitutive model described in Section 4.1.  Four different spatial discretisations (mesh densities) were 

considered: the bar was discretised with 31, 101 151and 201 elements along x axis, as shown in Figure 9.   

 

NEAR Figure 9 

Figure 9: Spatial discretisations used in the FE (DYNA3D) simulation of the strain-softening bar   

 

Similarly, in the SPH simulations, the bar was discretised with three different particle densities, determined 

by inter-particle spacings: Δp=1.98, 1.32 and 0.995 mm, as shown in Figure 10.   

 

NEAR Figure 10 

Figure 10: Particle discretisation in SPH (MCM) of strain-softening bar 

The smoothing length, which determines the range over which particle velocities and stresses are 

smoothed, is defined as:   

         (4-3) 

where   is a factor, which relates the interparticle spacing to the smoothing length.  For the B- Spline 

kernel, the smoothing domain has radius   , which is user defined parameter in SPH simulations.   

The influence of the smoothing length on the results is illustrated with three numerical experiments 

summarised in Table 4.2.   

 The first experiment investigates the influence of variable h, where h was varied by changing the 

interparticle distance    while keeping parameter   constant at      . This is a typical value used in 

SPH analyses.  In this experiment, the number of neighbours for a given particle, i.e. particles that lie 

within a spherical domain of radius   , was the same for all models.   

 The second experiment investigates the influence of h on the size of softening zone in the case of 

constant discretisation density (interparticle distance).  The interparticle distance was fixed as 

            , and   varied.  Parameter   was given values of       ,      and     , 

corresponding to 5 , 9 and 13 neighbour particles in the loading direction, respectively.   

 The third experiment investigated a fixed smoothing length of         for different discretisation 

densities.  In these tests, both the smoothing length parameter,   and the interparticle distance   , 

were varied.   

Table 4.2: Summary of the SPH discretisation parameters used in the three numerical experiments   
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4.3 Numerical Results of the Strain-Softening in FE and SPH 

4.3.1 Strain-Softening in FE  

The conventional strain-softening solutions, obtained with FE, are compared with the analytical solution for 

longitudinal displacement, strain and stress.  The stress-strain curves, obtained at the elements located at 

    for the FE models with different mesh densities, are shown in Figure 11.  The damage was limited to 

this element only and propagates towards the bar ends by the deformation of this element which 

undergoes softening.  The size of these elements, i.e. softening zones at response time            is 

shown in Figure 12 and Figure 17.  The size of the softening zone in which damage accumulates, was 

influenced by the initial element size (mesh sensitive).   

Figure 13, Figure 14 and Figure 15 respectively show the analytical solution and the FE numerical results for 

longitudinal displacement, strain and stress at response time           .  The results show a strong 

dependence on the mesh density in the strain-softening area           , as a consequence of the 

local strain-softening.  It can be observed that numerical results are converging to the analytical solution 

with the increase in mesh density.  The areas outside of            are still governed by the elastic 

solution.   

 

NEAR Figure 11 

 

NEAR Figure 12 

Figure 11: Longitudinal stress vs. longitudinal strain 

curves for the central element for different FE mesh 

densities    

Figure 12: Damage distribution for different FE mesh 

densities at response time             

 

NEAR Figure 13 

 

NEAR Figure 14 

Figure 13: Analytical solution and FE results for 

longitudinal displacement at            

Figure 14: Analytical solution and FE results for 

longitudinal strain at            

 

NEAR Figure 15 

 

NEAR Figure 16 

Figure 15: Analytical solution and FE results for 

longitudinal stress at            

Figure 16: FE results for internal energy 

Figure 17 illustrates the size of the strain/damage localisation zone at response time           .  It can 

be clearly seen that strain grows in a single element.  Consequently, the localisation zone reduces in size 

with the increase in mesh density and the strain magnitude in the central element increases with the 

reduction in element size.   

 

NEAR Figure 17 

Figure 17: Strain localisation at response time            in a single element due to material strain-softening 

(fringe level: strain [-]). 
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4.3.2 Strain-Softening in SPH 

Experiment 1 - Influence of interparticle distance, ∆p=variable, λ =1.3=constant 

The smoothing length,         , was varied in these three test cases by changing the inter particle 

distance, while maintaining a constant number of neighbouring particles.  Figure 18 shows the stress-strain 

curves, obtained for the central particle of the bar (    .  It is clear that for all particle densities, strain-

softening behaviour initiates at the centre of the bar and propagates outwards.   

Figure 19 shows the distribution of damage at response time           .  It can be seen that the width 

of the damaged area depends on the chosen interparticle distance, as the smoothing length is a function of 

   as   is constant.  The damage affected zone was largest for the largest   .   

Figure 20, Figure 21 and Figure 22  respectively show the profiles of longitudinal displacement, strain and 

stress, plotted along the bar length for the three inter-particle distances, along with the analytical solution.  

These results indicate that the stress waves continue to propagate through the softening zone and are 

close to the nonlocal solution.  Damage stays limited to the softening zone.   

 

 

NEAR Figure 18 

 

NEAR Figure 19 

Figure 18: Longitudinal stress vs. longitudinal strain 

curves at the central particle obtained with 

different particle densities, SPH-experiment 1  

Figure 19: Damage distribution for different particle 

densities at response time           ; SPH-

experiment 1. 

  

 

NEAR Figure 20 

 

NEAR Figure 21 

Figure 20: Analytical solution and numerical results 

for longitudinal displacement at            ; 

SPH-experiment 1.     

Figure 21: Analytical solution and numerical results 

for longitudinal strain at           ; SPH-

experiment 1. 
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NEAR Figure 23 

Figure 22: Analytical solution and numerical results 

for longitudinal stress at           ; SPH-

experiment 1.  

Figure 23: Internal energy for          ; SPH-

experiment 1. 

 

Figure 24 shows a graphical representation of the damage zone at response time           .  Damage 

is averaged over five particles along the length of the bar.  This number is constant for all particle spacings 

(  ) considered, however this may be difficult to observe in Figure 24 because of the significant difference 

in maximum damage magnitude (see Figure 19).  The width of the damage zone depends on the chosen 

interparticle distance.   
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NEAR Figure 24 

Figure 24: Localisation of damage within a limited area 4h in size          around the bar symmetry plane at 

response time            (fringe level: damage [-].  SPH experiment 1  

Development of damage in the centre of the bar, presented in Figure 24, shows that the increase of the 

smoothing length results in increase of the size of the damage zone.   

 

Experiment 2 - Influence of averaging over several neighbouring particles, ∆p=constant, λ =variable   

This experiment demonstrates the effects of the smoothing length size, varied by changing the parameter   

and keeping constant the inter-particle distance.  The bar with inter-particle distance              

was used in these experiments with       ,      and     , which correspond to 5, 9 and 13 

neighbouring particles respectively.   

Again, the particles in the centre of the bar undergo strain-softening, as illustrated in the longitudinal stress 

- longitudinal strain curves in Figure 25. The damage distribution at response time           , shown in 

Figure 26, indicates that the size of the damaged (softening zone) was dependent on the size of the 

smoothing domain.  Furthermore, maximum peak value of damage was obtained with the smallest 

smoothing length.   

Figure 27, Figure 28, Figure 29 and Figure 30 respectively show the profiles of longitudinal displacement, 

strain and stress plotted along the bar length for the three particle densities, along with the analytical 

solution.  These results indicate that the stress waves continue to propagate through the softening zone 

and are close to the nonlocal solution.  Damage stays limited to the softening zone.   

 

 

NEAR Figure 25 

 

NEAR Figure 26 

Figure 25: Longitudinal stress vs. longitudinal strain 

curves for the central particle obtained with 

different values of  ;  SPH-experiment 2 

Figure 26: Damage distribution obtained with 

different values of smoothing lengths at response 

time           ; SPH-experiment 2. 
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NEAR Figure 28 

Figure 27: Analytical solution and the numerical 

results for longitudinal displacement at response 

time           ; SPH-experiment 2  

Figure 28: Analytical solution and the numerical 

results for longitudinal strain at response time    

        ; SPH-experiment 2. 

 

NEAR Figure 29 
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Figure 29: Analytical solution and the numerical Figure 30: Internal energy for          ; SPH 
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results for longitudinal stress at response time 

          ; SPH experiment 2. 

experiment 2. 

Figure 31 shows the size of the damage zone, at response time           , obtained in the SPH 

experiment 2.  The three models have the same interparticle distance             ; however, the 

smoothing distance h was varied and consequently the number of neighbouring particles increased with 

increase of  .   

  

NEAR Figure 31 

Figure 31: Localisation of damage within a limited area 4h in size  (             ) around the bar symmetry 

plane at response time            (fringe level plotted on the scaled particles for the sake of clarity: damage [-]);  

SPH experiment 2.  

 

Experiment 3 - Influence of constant smoothing length            ,   =variable, h=2.5 mm 

Experiment 3 demonstrates the behaviour of SPH for different interparticle distances, subjected to a fixed 

smoothing length size,        .  The particle density, i.e. the number of neighbouring particles, was 

changed, by varying the interparticle distance used in the model.  Figure 32 shows the stress-strain curves 

for the three particle densities considered.  It is clear that all bars underwent linear strain-softening 

behaviour.   

Damage distribution at response time            is shown in Figure 33 for the central particle of the 

bar.  The results indicate that the size of the damaged zone did not depend on the interparticle distance 

  , i.e. particle density.  However the damage peak value was dependant on particle density (the lowest 

value obtained for the highest particle density).   

The distribution of longitudinal displacement, longitudinal strain and longitudinal stress shown in Figure 34, 

Figure 35 and Figure 36, respectively, corroborate the above statement and are independent of the particle 

density.  The effects of damage are smoothed out over an increasing number of particles with increasing 

interparticle distance.  These results indicate that the stress waves continue to propagate through the 

softening zone and are close to the nonlocal solution.   

 

NEAR Figure 32 

 

NEAR Figure 33 

Figure 32: Longitudinal stress vs. longitudinal strain 

curves for the central particle obtained with 

different values of   ; SPH-experiment 3. 

Figure 33: Damage distribution obtained with 

different particle densities at response time 

          ; SPH-experiment 3. 
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Figure 34: Analytical solution and the numerical Figure 35: Analytical solution and the numerical 
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results for longitudinal displacement at response 

time           ; SPH-experiment 3.   

results for longitudinal strain at response time 

          ; SPH-experiment 3. 

 

NEAR Figure 36 

 

NEAR Figure 37 

Figure 36: Analytical solution and the numerical 

results for longitudinal stress at response time 

          ; SPH-experiment 3.  

Figure 37: Internal energy for          ; SPH 

experiment 3. 

Finally, the physical size of the damage area, shown in Figure 38, is constant with a finite size of    

     and is independent of the interparticle distance.  

 

NEAR Figure 38 

Figure 38: Localisation of damage within a limited area 4h in size (       ) around the bar symmetry plane at 

response time            (fringe level: damage [-]); the damage distribution is independent of the interparticle 

distance    ; SPH experiment 3.  

Together the results from experiments 2 and 3 show that the width of the damage zone is dependent on 

the smoothing length h, not the interparticle distance   .  This suggests that when modelling a problem 

including material damage the smoothing length should not be smaller than the characteristic length of the 

damage and should be set to the characteristic length if the particle resolution permits. 

 

5 Conclusion 

In the FE simulations of the softening bar, the strain-softening process was always localised in a single 

element.  Consequently, the results obtained using the FE method were highly mesh sensitive and non-

physical.  Stress waves did not propagate through the softening zone.  

In the SPH simulations of the softening bar, damage was spread over the smoothing domain used in the 

kernel interpolation.  Consequently, the smoothing domain size represents a material characteristic length.  

The user can control the localisation process by varying the smoothing length  .  Stress waves propagated 

through the softening zone.   

These results demonstrate that, in the problem considered, SPH performed as nonlocal method and did not 

suffer from the same instabilities as FE.  The sensitivity of results to the spatial discretisation can be 

removed in SPH by adjusting the smoothing length appropriately, as the smoothing length represents a 

characteristic length that controls damage/softening localisation.  Consequently physically representative 

values for a material should be used when modelling damage. 

Summary of the numerical experiments performed with SPH   

The influence of the smoothing length on the strain-softening process was investigated in three different 

numerical experiments:   

 The first experiment (∆p=variable, λ =constant=1.3) investigated the influence of the smoothing 

length   (      ) on the bar softening.  The strain-softening effects were averaged over the 

same number of neighbouring particles for the three particle densities considered.  The size of the 
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softening zone was defined by h and the size of the zone increased with the increase in particle 

size.   

 The second experiment (∆p=constant, λ =variable) investigated the influence of variation of 

smoothing length h, when particle density was kept the same (constant interparticle distance).  The 

increase in size of h resulted in reduction of the damage peak value.  

 The third experiment (∆p=constant, λ =variable, h=2.5 mm) considered a fixed size smoothing 

length h for three different particle densities.  The damage effects propagated the same distance in 

all simulations, giving a constant softening zone size.  The peak damage value reduced with the 

increase of the number of neighbouring particles.  
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Figure 1  Stress-strain diagram of softening material Bažant and Belytschko (1985) 
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Figure 2 Geometry and loading of softening bar, Bažant and Belytschko (1985) 
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Figure 3 Elastic local and nonlocal solutions for 

normalised longitudinal displacement at           

Figure 4 Elastic local and nonlocal solutions for 

normalised longitudinal strain at           

  

  

  

Figure 5 Elastic local and nonlocal solutions for 

normalised longitudinal stress at           

Figure 6 Internal energy history for the local and 

nonlocal solutions 
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Figure 7 Set of neighbouring particles 

Figure



Figure 8 Material model with strain-softening implemented into the MCM SPH code and FE code 

DYNA3D 

 

 

 

 

 

 

 

 

  

      

  

  

  

    

Figure



 

Figure 9 Spatial discretisations used in the FE (DYNA3D) simulation of the strain-softening bar 
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Figure 10 Particle discretisation in SPH (MCM) of strain-softening bar   

2 200L mm
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Figure 11 Longitudinal stress vs. longitudinal strain 

curves for the central element for different FE mesh 

densities    

Figure 12 Damage distribution for different FE mesh 

densities at response time             

  

Figure 13 Analytical solution and FE results for 

longitudinal displacement at            

Figure 14 Analytical solution and FE results for 

longitudinal strain at            

  

 

Figure 15 Analytical solution and FE results for 

longitudinal stress at            

Figure 16 FE results for internal energy 
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Figure 17 Strain localisation at response time           in a single element due to material 

strain-softening (fringe level: strain [-]) 

Figure



  

Figure 18 Longitudinal stress vs. longitudinal strain 

curves at the central particle obtained with different 

particle densities, SPH-experiment 1  

Figure 19 Damage distribution for different particle 

densities at response time           ; SPH-

experiment 1. 

  

  

Figure 20 Analytical solution and numerical results for 

longitudinal displacement at            ; SPH-

experiment 1.     

Figure 21 Analytical solution and numerical results 

for longitudinal strain at           ; SPH-

experiment 1. 

  

Figure 22 Analytical solution and numerical results for 

longitudinal stress at           ; SPH-experiment 

1.  

Figure 23 Internal energy for          ; SPH-

experiment 1. 

 

 

Figure



 

Figure 24 Localisation of damage within a limited area 4h in size h=1.3∙∆p around the bar symmetry 

plane at response time t=3/2∙L/c_e (fringe level: damage [-].  SPH experiment 1 

Figure



 
 

Figure 25 Longitudinal stress vs. longitudinal strain 

curves for the central particle obtained with different 

values of  ;  SPH-experiment 2 

Figure 26 Damage distribution obtained with 

different values of smoothing lengths at response 

time           ; SPH-experiment 2. 

  

  

Figure 27 Analytical solution and the numerical results 

for longitudinal displacement at response time   

        ; SPH-experiment 2  

Figure28 Analytical solution and the numerical 

results for longitudinal strain at response time    

        ; SPH-experiment 2. 

  

Figure 29 Analytical solution and the numerical results 

for longitudinal stress at response time         

  ; SPH experiment 2. 

Figure 30 Internal energy for          ; SPH 

experiment 2. 

 

Figure



 

Figure 31 Localisation of damage within a limited area 4h in size  (             ) around the 

bar symmetry plane at response time            (fringe level plotted on the scaled particles for 

the sake of clarity: damage [-]);  SPH experiment 2. 

Figure



 
 

Figure 32 Longitudinal stress vs. longitudinal strain 

curves for the central particle obtained with different 

values of   ; SPH-experiment 3. 

Figure 33 Damage distribution obtained with different 

particle densities at response time           ; 

SPH-experiment 3. 

  

  

  

Figure 34 Analytical solution and the numerical 

results for longitudinal displacement at response time 

          ; SPH-experiment 3.   

Figure 35 Analytical solution and the numerical 

results for longitudinal strain at response time 

          ; SPH-experiment 3. 

  

Figure 36 Analytical solution and the numerical 

results for longitudinal stress at response time 

          ; SPH-experiment 3.  

Figure 37 Internal energy for          ; SPH 

experiment 3. 

 

Figure



 

Figure 38 Localisation of damage within a limited area 4h in size (h=2.5mm) around the bar 

symmetry plane at response time t=3/2∙L/c_e (fringe level: damage [-]); the damage distribution is 

independent of the interparticle distance Δp ; SPH experiment 3. 

Figure



Table 3-1  Balance equations in continuum and SPH discrete forms Vignjevic at al. (2006)  

 Balance equations in continual and the SPH discrete forms  
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Table 4-1: Input data for isotropic CDM model with linear strain-softening for FE (DYNA3D) and SPH (MCM) 

Value Sign Magnitude Unit 

Density                        

Young’s Modulus             

Poisson’s ratio   0.125   

Initial failure strain            

Critical failure strain            

 

 

Table



Table 4-2: Summary of conditions for SPH Experiments 1, 2 and 3  

Interparticle 

distance    

[mm] 

Support 

domain factor 

  [-] 

Physical 

smoothing 

length 

(      ) 

[mm] 

Particles 

through 

thickness (y- 

and z-

direction) 

Particles along 

the length 

Total number 

of particles 

Experiment 1: Influence of interparticle distance,            ,   =1.3=constant 

200/101 

1.3 

260/101 5 101 2525 

200/151 260/151 9 151 12231 

200/201 260/201 11 201 24321 

Experiment 2: Influence of averaging over several neighbouring particles,            ,   =variable 

200/201 

1.25 250/201 

11 201 24321 2.25 150/67 

3.25 650/201 

Experiment 3: Influence of constant smoothing length            ,   =variable, h=25 mm 

200/101 1.2625 

2.5 

5 101 2525 

200/151 1.8875 9 151 12231 

200/201 2.5125 11 201 24321 

 

Table


