111 research outputs found

    Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress

    Get PDF
    Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plantĂąfungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H2O2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungalĂąendobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H2O2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H2O2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H2O2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies

    Phenols and antioxidant activity in vitro and in vivo of aqueous extracts obtained by ultrasound-assisted extraction from artichoke by-products.

    Get PDF
    Artichoke by-products are rich in phenolic compounds although they represent a waste for the food industry. This paper examines the application of ultrasound-assisted extraction (UAE) for obtaining organic solvent-free extracts rich in nutraceuticals from artichoke scraps. Application of ultrasounds for 60 minutes on test samples, using water as a solvent, improved recovery of phenolic substances compared with untreated samples. Among the phenols detected by high performance liquid chromatography, 5- O-caffeoylquinic and 1,5-di- O-caffeoylquinic acids were identified. In vivo treatments of tobacco BY-2 cells with ultrasonic extracts consistently enhanced their antioxidant power, making the cells more resistant to heat stress. UAE applied to artichoke by-products, using water as a solvent, appears to be a powerful eco-friendly technique that can provide extracts rich in nutraceuticals and turn waste products into resources. The extracts could be advantageously utilized in the food industry to produce functional foods

    Quantitative phosphoproteomics reveals novel roles of cAMP in plants

    Get PDF
    3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells

    Glutamine synthetase in durum wheat: Genotypie variation and relationship with grain protein content

    Get PDF
    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes

    Hyperbaric exposure and oxidative Stress in occupational activities (HEOxS): the study protocol

    Get PDF
    Background: Hyperbaric exposure (HE) is proven to be a stressor to several mechanisms in living cells. Even if after homeostasis restoration, harmful effects are expected, in particular a presence of free radicals. These latter are the stimulus to negative phenomenon as inflammation or cancer. In Italy, with 7500 km of sea shores, a large quantity of workers is exposed to HE during occupational activities. A deep knowledge of HE and bodily effects is not well defined; hence a multidisciplinary assessment of risk is needed. To detect one or more indicators of HE a research group is organised, under the INAIL sponsorship. The research project focused on the oxidative stress (OxS) and this paper details on the possible protocol to estimate, with a large amount of techniques on several human liquids, the relationship between OxS and HE. Specific attention will be paid to identify confounding factors and their influence. Methods: Blood and urine will be sampled. Several lab techniques will be performed on samples, both targeted, to measure the level of well-known biomarkers, and untargeted. Regard the formers: products of oxidation of DNA and RNA in urine; inflammation and temperature cytokines and protein carbonyles in blood. Untargeted evaluation will be performed for a metabolomics analysis in urine. Confounding factors: temperature, body fat, fitness, allergies and dietary habits. These factors will be assessed, directly or indirectly, prior and after HE. The final scope of the project is to determine one or more indicators that relates to HE in hits twofold nature: depth and duration. Conclusion: The relationship between OxS and HE is not deeply investigated and literature proposes diverging results. The project aims to define the time dependence of biomarkers related to OxS, to rise knowledge in risk assessment in workers exposed to HE

    Multicentric Atrial Strain COmparison between Two Different Modalities: MASCOT HIT Study

    Get PDF
    Two methods are currently available for left atrial (LA) strain measurement by speckle tracking echocardiography, with two different reference timings for starting the analysis: QRS (QRS-LASr) and P wave (P-LASr). The aim of MASCOT HIT study was to define which of the two was more reproducible, more feasible, and less time consuming. In 26 expert centers, LA strain was analyzed by two different echocardiographers (young vs senior) in a blinded fashion. The study population included: healthy subjects, patients with arterial hypertension or aortic stenosis (LA pressure overload, group 2) and patients with mitral regurgitation or heart failure (LA volume–pressure overload, group 3). Difference between the inter-correlation coefficient (ICC) by the two echocardiographers using the two techniques, feasibility and analysis time of both methods were analyzed. A total of 938 subjects were included: 309 controls, 333 patients in group 2, and 296 patients in group 3. The ICC was comparable between QRS-LASr (0.93) and P-LASr (0.90). The young echocardiographers calculated QRS-LASr in 90% of cases, the expert ones in 95%. The feasibility of P-LASr was 85% by young echocardiographers and 88% by senior ones. QRS-LASr young median time was 110 s (interquartile range, IR, 78-149) vs senior 110 s (IR 78-155); for P-LASr, 120 s (IR 80-165) and 120 s (IR 90-161), respectively. LA strain was feasible in the majority of patients with similar reproducibility for both methods. QRS complex guaranteed a slightly higher feasibility and a lower time wasting compared to the use of P wave as the reference

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)
    • 

    corecore