133 research outputs found

    Clustering of red galaxies around the z=1.53 quasar 3C270.1

    Full text link
    In the paradigm of hierarchical galaxy formation, luminous radio galaxies mark mass assembly peaks that should contain clusters of galaxies. Observations of the z=1.53 quasar 3C270.1 with the Spitzer Space Telescope at 3.6-24 micron and with the 6.5-m MMT in the z'- and Y-bands allow detection of potential cluster members via photometric redshifts. Compared with nearby control fields, there is an excess of 11 extremely red objects (EROs) at 1.33 < z_phot < 1.73, consistent with a proto-cluster around the quasar. The spectral energy distributions (SEDs) of 3/4 of the EROs are better fitted with passive elliptical galaxies than withdust-reddened starbursts, and of four sources well-detected on an archival HST snapshot image, all have undisturbed morphologies. However, one ERO, not covered by the HST image, is a double source with 0.8" separation on the z' image and a marginal (2sigma) 24 micron detection indicating a dust-enshrouded starburst. The EROs are more luminous than L* (H = -23.6 AB mag at z=1.5).Comment: 12 pages, 7 figures, accepted by Ap

    Efficient and perfect state transfer in quantum chains

    Full text link
    We present a communication protocol for chains of permanently coupled qubits which achieves perfect quantum state transfer and which is efficient with respect to the number chains employed in the scheme. The system consists of MM uncoupled identical quantum chains. Local control (gates, measurements) is only allowed at the sending/receiving end of the chains. Under a quite general hypothesis on the interaction Hamiltonian of the qubits a theorem is proved which shows that the receiver is able to asymptotically recover the messages by repetitive monitoring of his qubits.Comment: 6 pages, 2 figures; new material adde

    Potential of the next generation VHE instruments to probe the EBL (I): the low- and mid-VHE

    Full text link
    The diffuse meta-galactic radiation field at ultraviolet to infrared wavelengths - commonly labeled extragalactic background light (EBL) - contains the integrated emission history of the universe. Difficult to access via direct observations indirect constraints on its density can be derived through observations of very-high energy (VHE; E>100 GeV) gamma-rays from distant sources: the VHE photons are attenuated via pair-production with the low energy photons from the EBL, leaving a distinct imprint in the VHE spectra measured on earth. Discoveries made with current generation VHE observatories like H.E.S.S. and MAGIC enabled strong constraints on the density of the EBL especially in the near-infrared. In this article the prospect of future VHE observatories to derive new constraints on the EBL density are discussed. To this end, results from current generation instruments will be extrapolated to the future experiment's sensitivity and investigated for their power to enable new methods and improved constraints on the EBL density.Comment: Accepted for publication in Astroparticle Physics; v2: extended discussion following referees comments, conclusions unchange

    The Mid-Infrared Environments of High-Redshift Radio Galaxies

    Full text link
    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2<z<3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5]>-0.1 (AB), in the fields of 48 radio galaxies at 1.2<z<3. This simple IRAC color selection is effective at identifying galaxies at z>1.2. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1arcmin (i.e.,~0.5Mpc at 1.2<z<3) of the radio galaxy to the 5sigma flux density limits of our IRAC data (f3.6=11.0uJy, f4.5=13.4uJy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z>1.2.Comment: 14 pages, 7 figures, 3 tables, accepted for publication in Ap

    The Chandra XBootes Survey - III: Optical and Near-IR Counterparts

    Full text link
    The XBootes Survey is a 5-ks Chandra survey of the Bootes Field of the NOAO Deep Wide-Field Survey (NDWFS). This survey is unique in that it is the largest (9.3 deg^2), contiguous region imaged in X-ray with complementary deep optical and near-IR observations. We present a catalog of the optical counterparts to the 3,213 X-ray point sources detected in the XBootes survey. Using a Bayesian identification scheme, we successfully identified optical counterparts for 98% of the X-ray point sources. The optical colors suggest that the optically detected galaxies are a combination of z<1 massive early-type galaxies and bluer star-forming galaxies whose optical AGN emission is faint or obscured, whereas the majority of the optically detected point sources are likely quasars over a large redshift range. Our large area, X-ray bright, optically deep survey enables us to select a large sub-sample of sources (773) with high X-ray to optical flux ratios (f_x/f_o>10). These objects are likely high redshift and/or dust obscured AGN. These sources have generally harder X-ray spectra than sources with 0.1<f_x/f_o<10. Of the 73 X-ray sources with no optical counterpart in the NDWFS catalog, 47 are truly optically blank down to R~25.5 (the average 50% completeness limit of the NDWFS R-band catalogs). These sources are also likely to be high redshift and/or dust obscured AGN.Comment: 19 pages, 13 figures, ApJ accepted. Catalog can be found at: http://www.noao.edu/noao/noaodeep or ftp://archive.noao.edu/pub/catalogs/xbootes

    The Spitzer High Redshift Radio Galaxy Survey

    Full text link
    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1<z<5.2 using all three cameras onboard the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 sources and hot dust emission associated with the active nucleus in 59. Using a new restframe S_3um/S_1.6um versus S_um/S_3um criterion, we identify 42 sources where the restframe 1.6um emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2x10^11 M_sun, and remarkably constant within the range 13, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z~3, but confirmation by more detailed decomposition of stellar and AGN emission is needed. The restframe 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the restframe 5um hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance --- an indicator of jet orientation --- is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6") companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.Comment: 31 pages, 125 figures. Accepted for publication in the Astrophysical Journa

    Keck Spectroscopy of 3<z<7 Faint Lyman Break Galaxies: The Importance of Nebular Emission in Understanding the Specific Star Formation Rate and Stellar Mass Density

    Get PDF
    The physical properties inferred from the SEDs of z>3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFR) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broad-band fluxes, we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is systematically in excess of that expected from stellar continuum, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample at 3.1<z<3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 um flux excesses, we derive an H-alpha equivalent width (EW) distribution. The mean rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 um flux. Via our empirically-derived EW distribution we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z>4 than previously thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.Comment: 16 pages, 9 figures, submitted to Ap

    The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    Get PDF
    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.Comment: Accepted for publication in the Astrophysical Journal. Data and maps are available at http://blastexperiment.info

    Ultracool Field Brown Dwarf Candidates Selected at 4.5 microns

    Get PDF
    We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and required to have [3.6]-[4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened AGN. Optical detection of 4 of the remaining 18 sources implies they are likely also AGN, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of ~ T8. The proper motion is < 0.25 "/yr, consistent with expectations for a luminosity inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5]=2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. (2003) predict larger numbers of cool brown dwarfs should be found for a Chabrier (2003) mass function. Suppressing the model [4.5] flux by a factor of two, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer (WISE) will probe a volume ~40x larger and should find hundreds of brown dwarfs cooler than T7.Comment: 13 pages, 6 figures, accepted for publication in the June 2010 issue of The Astronomical Journa

    The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging: Methodology and Baseline Characteristics of 1112 Individuals Recruited for a Longitudinal Study of Alzheimer\u27s Disease

    Get PDF
    Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging aimed to recruit 1000 individuals aged over 60 to assist with prospective research into Alzheimer\u27s disease (AD). This paper describes the recruitment of the cohort and gives information about the study methodology, baseline demography, diagnoses, medical comorbidities, medication use, and cognitive function of the participants. Methods: Volunteers underwent a screening interview, had comprehensive cognitive testing, gave 80 ml of blood, and completed health and lifestyle questionnaires. One quarter of the sample also underwent amyloid PET brain imaging with Pittsburgh compound B (PiB PET) and MRI brain imaging, and a subgroup of 10% had ActiGraph activity monitoring and body composition scanning. Results: A total of 1166 volunteers were recruited, 54 of whom were excluded from further study due to comorbid disorders which could affect cognition or because of withdrawal of consent. Participants with AD (211) had neuropsychological profiles which were consistent with AD, and were more impaired than participants with mild cognitive impairment (133) or healthy controls (768), who performed within expected norms for age on neuropsychological testing. PiB PET scans were performed on 287 participants, 100 had DEXA scans and 91 participated in ActiGraph monitoring. Conclusion: The participants comprising the AIBL cohort represent a group of highly motivated and well-characterized individuals who represent a unique resource for the study of AD. They will be reassessed at 18-month intervals in order to determine the predictive utility of various biomarkers, cognitive parameters and lifestyle factors as indicators of AD, and as predictors of future cognitive decline
    corecore