209 research outputs found

    Acute exercise intensity and memory function: Evaluation of the transient hypofrontality hypothesis

    Get PDF
    Β© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background and Objective: The transient hypofrontality hypothesis predicts that memory function will be impaired during high-intensity exercise, as a result of a need for metabolic and cognitive resources to be allocated toward sustaining movement, as opposed to performing a cognitive task. The purpose of these experiments was to evaluate this transient hypofrontality hypothesis. Materials and Methods: Experiment 1 involved participants (n = 24; Mage = 21.9 years) completing four counterbalanced visits. Two visits evaluated working memory function, either at rest or during a high-intensity bout of acute exercise. The other two visits evaluated episodic memory function, either at rest or during a high-intensity bout of acute exercise. Experiment 2 (n = 24; Mage = 20.9 years) extended Experiment 1 by evaluating memory function (working memory) across 4 counterbalanced conditions, including at rest and during light (30% of heart rate reserve; HRR), moderate (50% HRR) and high-intensity (80% HRR) acute exercise. Results: Experiment 1 demonstrated that, when compared to rest, both working memory and episodic memory were impaired during high-intensity acute exercise. Experiment 2 replicated this effect, but then also showed that, unlike high-intensity acute exercise, memory function was not impaired during low-and moderate-intensity acute exercise. Conclusions: Our experiments provide support for the transient hypofrontality hypothesis. Both working memory and episodic memory are impaired during high-intensity acute exercise. Working memory does not appear to be impaired during lower exercise intensities

    Fully Self-consistent RPA description of the many level pairing model

    Get PDF
    The Self-Consistent RPA (SCRPA) equations in the particle-particle channel are solved without any approximation for the picket fence model. The results are in excellent agreement with the exact solutions found with the Richardson method. Particularly interesting features are that screening corrections reverse the sign of the interaction and that SCRPA yields the exact energies in the case of two levels with two particles.Comment: 37 pages, 1 figure and 17 table

    Nutrient flux and budget in the Ebro estuary

    Full text link
    The Ebro river flows to the Mediterranean coast of Spain. During its final stretch, the Ebro behaves in a similar way to a highly stratified estuary. This paper describes the transport of nutrients to the Ebro estuary, evaluates the general movement of nutrients in the estuarine region, using a mass balance approach, and estimates the amounts of nutrients discharged to the coastal environment. Given the strong saline stratification, this study only includes the surface layer that contains the continental freshwater. The annual nutrient budget for the Ebro estuary shows a net excess for nitrogen and phosphorus, while silicate almost attains equilibrium between addition and removal. There are several reasons for gains in nitrogen and phosphorous: a contribution of dissolved and particulate compounds in the freshwater (some of which are mineralized); a lower uptake of phytoplankton indicated by chlorophyll reduction in the estuary; an entrainment of the nutrient-rich upper part of the salt wedge; and, to a lesser extent, the impact of wastewater and agricultural water use. The biggest load discharged into the Mediterranean Sea by the Ebro is nitrogen, followed by silicate with over 10 000 tons of each deposited annually. Phosphorus is discharged at relatively low concentrations and with an annual load of about 200 t yrΒΏ1.This project was funded by the European Union in the framework of the MAST-III research project: "Preparation and Integration of Analysis Tools towards Operational Forecast of Nutrients in Estuaries of European Rivers (PIONEER)", Reference No. MAS3-CT98-0170.Falco Giaccaglia, SL.; Niencheski, L.; Rodilla AlamΓ‘, M.; Romero Gil, I.; GonzΓ‘lez Del Rio Rams, J.; Sierra, J.; MΓΆsso, C. (2010). Nutrient flux and budget in the Ebro estuary. Estuarine, Coastal and Shelf Science. 87(1):92-102. doi:10.1016/j.ecss.2009.12.020S9210287

    A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape

    Get PDF
    Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-Ξ²-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin β€”by avoiding the biased repertoire of transition mutations produced by this purine analogueβ€”and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure

    Impact of SARS-Cov-2 infection in patients with hypertrophic cardiomyopathy : results of an international multicentre registry

    Get PDF
    To describe the natural history of SARS-CoV-2 infection in patients with hypertrophic cardiomyopathy (HCM) compared with a control group and to identify predictors of adverse events. Three hundred and five patients [age 56.6 Β± 16.9 years old, 191 (62.6%) male patients] with HCM and SARS-Cov-2 infection were enrolled. The control group consisted of 91 131 infected individuals. Endpoints were (i) SARS-CoV-2 related mortality and (ii) severe clinical course [death or intensive care unit (ICU) admission]. New onset of atrial fibrillation, ventricular arrhythmias, shock, stroke, and cardiac arrest were also recorded. Sixty-nine (22.9%) HCM patients were hospitalized for non-ICU level care, and 21 (7.0%) required ICU care. Seventeen (5.6%) died: eight (2.6%) of respiratory failure, four (1.3%) of heart failure, two (0.7%) suddenly, and three (1.0%) due to other SARS-CoV-2-related complications. Covariates associated with mortality in the multivariable were age {odds ratio (OR) per 10 year increase 2.25 [95% confidence interval (CI): 1.12-4.51], P = 0.0229}, baseline New York Heart Association class [OR per one-unit increase 4.01 (95%CI: 1.75-9.20), P = 0.0011], presence of left ventricular outflow tract obstruction [OR 5.59 (95%CI: 1.16-26.92), P = 0.0317], and left ventricular systolic impairment [OR 7.72 (95%CI: 1.20-49.79), P = 0.0316]. Controlling for age and sex and comparing HCM patients with a community-based SARS-CoV-2 cohort, the presence of HCM was associated with a borderline significant increased risk of mortality OR 1.70 (95%CI: 0.98-2.91, P = 0.0600). Over one-fourth of HCM patients infected with SARS-Cov-2 required hospitalization, including 6% in an ICU setting. Age and cardiac features related to HCM, including baseline functional class, left ventricular outflow tract obstruction, and systolic impairment, conveyed increased risk of mortality

    Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    Get PDF
    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 mΓ—40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range

    mRNA-Seq Analysis of the Pseudoperonospora cubensis Transcriptome During Cucumber (Cucumis sativus L.) Infection

    Get PDF
    Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, β€˜Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host

    Enhancement of a modified Mediterranean-style, low glycemic load diet with specific phytochemicals improves cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia in a randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the worldwide dietary pattern becomes more westernized, the metabolic syndrome is reaching epidemic proportions. Lifestyle modifications including diet and exercise are recommended as first-line intervention for treating metabolic syndrome. Previously, we reported that a modified Mediterranean-style, low glycemic load diet with soy protein and phytosterols had a more favorable impact than the American Heart Association Step 1 diet on cardiovascular disease (CVD) risk factors. Subsequently, we screened for phytochemicals with a history of safe use that were capable of increasing insulin sensitivity through modulation of protein kinases, and identified hops <it>rho </it>iso-alpha acid and acacia proanthocyanidins. The objective of this study was to investigate whether enhancement of a modified Mediterranean-style, low glycemic load diet (MED) with specific phytochemicals (soy protein, phytosterols, <it>rho </it>iso-alpha acids and proanthocyanidins; PED) could improve cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia.</p> <p>Methods</p> <p>Forty-nine subjects with metabolic syndrome and hypercholesterolemia, aged 25–80, entered a randomized, 2-arm, 12-week intervention trial; 23 randomized to the MED arm; 26 to the PED arm. Forty-four subjects completed at least 8 weeks [MED (<it>n </it>= 19); PED (<it>n </it>= 25)]. All subjects were instructed to follow the same aerobic exercise program. Three-day diet diaries and 7-day exercise diaries were assessed at each visit. Fasting blood samples were collected at baseline, 8 and 12 weeks for analysis.</p> <p>Results</p> <p>Both arms experienced equal weight loss (MED: -5.7 kg; PED: -5.9 kg). However, at 12 weeks, the PED arm experienced greater reductions (<it>P </it>< 0.05) in cholesterol, non-HDL cholesterol, triglycerides (TG), cholesterol/HDL and TG/HDL compared with the MED arm. Only the PED arm experienced increased HDL (<it>P </it>< 0.05) and decreased TG/HDL (<it>P </it>< 0.01), and continued reduction in apo B/apo A-I from 8 to 12 weeks. Furthermore, 43% of PED subjects vs. only 22% of MED subjects had net resolution of metabolic syndrome. The Framingham 10-year CVD risk score decreased by 5.6% in the PED arm (<it>P </it>< 0.01) and 2.9% in the MED arm (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>These results demonstrate that specific phytochemical supplementation increased the effectiveness of the modified Mediterranean-style low glycemic load dietary program on variables associated with metabolic syndrome and CVD.</p

    Tuberculosis and HIV Co-Infection

    Get PDF
    Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases
    • …
    corecore