527 research outputs found

    The Density Matrix Renormalization Group Method and Large-Scale Nuclear Shell-Model Calculations

    Get PDF
    The particle-hole Density Matrix Renormalization Group (p-h DMRG) method is discussed as a possible new approach to large-scale nuclear shell-model calculations. Following a general description of the method, we apply it to a class of problems involving many identical nucleons constrained to move in a single large j-shell and to interact via a pairing plus quadrupole interaction. A single-particle term that splits the shell into degenerate doublets is included so as to accommodate the physics of a Fermi surface in the problem. We apply the p-h DMRG method to this test problem for two jj values, one for which the shell model can be solved exactly and one for which the size of the hamiltonian is much too large for exact treatment. In the former case, the method is able to reproduce the exact results for the ground state energy, the energies of low-lying excited states, and other observables with extreme precision. In the latter case, the results exhibit rapid exponential convergence, suggesting the great promise of this new methodology even for more realistic nuclear systems. We also compare the results of the test calculation with those from Hartree-Fock-Bogolyubov approximation and address several other questions about the p-h DMRG method of relevance to its usefulness when treating more realistic nuclear systems

    Fully Self-consistent RPA description of the many level pairing model

    Get PDF
    The Self-Consistent RPA (SCRPA) equations in the particle-particle channel are solved without any approximation for the picket fence model. The results are in excellent agreement with the exact solutions found with the Richardson method. Particularly interesting features are that screening corrections reverse the sign of the interaction and that SCRPA yields the exact energies in the case of two levels with two particles.Comment: 37 pages, 1 figure and 17 table

    Pairing in 4-component fermion systems: the bulk limit of SU(4)-symmetric Hamiltonians

    Full text link
    Fermion systems with more than two components can exhibit pairing condensates of much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson-Gaudin model with SU(4)-symmetric Hamiltonians, we show that the BCS approximation remains valid in the thermodynamic limit of large systems for describing the ground state energy and the canonical and quasiparticle excitation gaps. Correlations beyond BCS pairing give rise to a spectrum of collective excitations, but these do not affect the bulk energy and quasiparticle gaps.Comment: 13 pages; 2 figures; 1 tabl

    Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature

    Get PDF
    A self-consistent version of the Thermal Random Phase Approximation (TSCRPA) is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA is applied to the many level pairing model. The normal phase of the system is considered. The TSCRPA results are compared with the exact ones calculated for the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean Field Approximation (TMFA) and the standard Thermal Random Phase Approximation (TRPA) are demonstrated. Results for correlation functions, excitation energies, single particle level densities, etc., as a function of temperature are presented.Comment: 22 pages, 13 figers and 3 table

    Valence Bond Mapping of Antiferromagnetic Spin Chains

    Get PDF
    Boson mapping techniques are developed to describe valence bond correlations in quantum spin chains. Applying the method to the alternating bond hamiltonian for a generic spin chain, we derive an analytic expression for the transition points which gives perfect agreement with existing Density Matrix Renormalization Group (DMRG) and Quantum Monte Carlo (QMC) calculations.Comment: 10 pages, Revte
    corecore