166 research outputs found

    Relapse to smoking during unaided cessation: Clinical, cognitive, and motivational predictors

    Get PDF
    Rationale: Neurobiological models of addiction suggest that abnormalities of brain reward circuitry distort salience attribution and inhibitory control processes, which in turn contribute to high relapse rates. Objectives: To determine whether impairments of salience attribution and inhibitory control predict relapse in a pharmacologically unaided attempt at smoking cessation. Methods: 141 smokers were assessed on indices of nicotine consumption / dependence (e.g. the FTND, cigarettes per day, salivary cotinine), and three trait impulsivity measures. After overnight abstinence they completed experimental tests of cue reactivity, attentional bias to smoking cues, response to financial reward, motor impulsiveness, and response inhibition (antisaccades). They then started a quit attempt with follow-up after 7 days, 1 month, and 3 months; abstinence was verified via salivary cotinine levels ≤ 20ng/ml. Results: Relapse rates at each point were 52.5%, 64% and 76.3%. The strongest predictor was pre-cessation salivary cotinine; other smoking / dependence indices did not explain additional outcome variance and neither did trait impulsivity. All experimental indices except responsivity to financial reward significantly predicted one week outcome. Salivary cotinine, attentional bias to smoking cues and antisaccade errors explained unique as well as shared variance. At one and three months, salivary cotinine, motor impulsiveness and cue reactivity were all individually predictive; the effects of salivary cotinine and motor impulsiveness were additive. Conclusions: These data provide some support for the involvement of abnormal cognitive and motivational processes in sustaining smoking dependence and suggest that they might be a focus of interventions, especially in the early stages of cessation. Dawkins L, Powell JH, Pickering AD, Powell JF, and West RJ (2009) Addiction 104, 850-

    Scaling properties of protein family phylogenies

    Get PDF
    One of the classical questions in evolutionary biology is how evolutionary processes are coupled at the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling, as a characterization of balance) of a large set of protein phylogenies with a set of species phylogenies. The comparative analysis shows that both sets of phylogenies share remarkably similar scaling behavior, suggesting the universality of branching rules and of the evolutionary processes that drive biological diversification from gene to species level. In order to explain such generality, we propose a simple model which allows us to estimate the proportion of evolvability/robustness needed to approximate the scaling behavior observed in the phylogenies, highlighting the relevance of the robustness of a biological system (species or protein) in the scaling properties of the phylogenetic trees. Thus, the rules that govern the incapability of a biological system to diversify are equally relevant both at the gene and at the species level.Comment: Replaced with final published versio

    Graveyards on the Move: The Spatio-Temporal Distribution of Dead Ophiocordyceps-Infected Ants

    Get PDF
    Parasites are likely to play an important role in structuring host populations. Many adaptively manipulate host behaviour, so that the extended phenotypes of these parasites and their distributions in space and time are potentially important ecological variables. The fungus Ophiocordyceps unilateralis, which is pan-tropical in distribution, causes infected worker ants to leave their nest and die under leaves in the understory of tropical rainforests. Working in a forest dynamic plot in Southern Thailand we mapped the occurrence of these dead ants by examining every leaf in 1,360 m2 of primary rainforest. We established that high density aggregations exist (up to 26 dead ants/m2), which we coined graveyards. We further established that graveyards are patchily distributed in a landscape with no or very few O. unilateralis-killed ants. At some, but not all, spatial scales of analysis the density of dead ants correlated with temperature, humidity and vegetation cover. Remarkably, having found 2243 dead ants inside graveyards we only found 2 live ants of the principal host, ant Camponotus leonardi, suggesting that foraging host ants actively avoid graveyards. We discovered that the principal host ant builds nests in high canopy and its trails only occasionally descend to the forest floor where infection occurs. We advance the hypothesis that rare descents may be a function of limited canopy access to tree crowns and that resource profitability of such trees is potentially traded off against the risk of losing workers due to infection when forest floor trails are the only access routes. Our work underscores the need for an integrative approach that recognises multiple facets of parasitism, such as their extended phenotypes

    Enabling global clinical collaborations on identifiable patient data: The Minerva Initiative

    Get PDF
    The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health

    Gaze sensitivity: function and mechanisms from sensory and cognitive perspectives

    Get PDF
    Sensitivity to the gaze of other individuals has long been a primary focus in sociocognitive research on humans and other animals. Information about where others are looking may often be of adaptive value in social interactions and predator avoidance, but studies across a range of taxa indicate there are substantial differences in the extent to which animals obtain and use information about other individuals' gaze direction. As the literature expands, it is becoming increasingly difficult to make comparisons across taxa as experiments adopt and adjust different methodologies to account for differences between species in their socioecology, sensory systems and possibly also their underlying cognitive mechanisms. Furthermore, as more species are found to exhibit gaze sensitivity, more terminology arises to describe the behaviours. To clarify the field, we propose a restricted nomenclature that defines gaze sensitivity in terms of observable behaviour, independent of the underlying mechanisms. This is particularly useful in nonhuman animal studies where cognitive interpretations are ambiguous. We then describe how socioecological factors may influence whether species will attend to gaze cues, and suggest links between ultimate factors and proximate mechanisms such as cognition and perception. In particular, we argue that variation in sensory systems, such as retinal specializations and the position of the eyes, will determine whether gaze cues (e.g. head movement) are perceivable during visual fixation. We end by making methodological recommendations on how to apply these variations in socioecology and visual systems to advance the field of gaze research

    Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Get PDF
    BACKGROUND: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages

    Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    Get PDF
    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role

    Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced Changes in Body Plan

    Get PDF
    BACKGROUND: By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. METHODOLOGY/PRINCIPAL FINDINGS: By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ~50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. CONCLUSIONS/SIGNIFICANCE: Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.Brett A. Goodman and Pieter T. J. Johnso

    Resources and the life course: Patterns through the demographic transition

    Full text link
    In most mammals, and in the majority of traditional human societies for which data exist, status, power, or resource control correlates with lifetime reproductive success; male and female patterns differ. Because such correlations are often argued to have disappeared in human societies during the demographic transition of the nineteenth century, we analyzed wealth and lifetime reproductive success in a nineteenth-century Swedish population in four economically diverse parishes, subsuming geographic and temporal variation. Children of both sexes born to poorer parents were more likely than richer children to die or emigrate before reaching maturity. Poorer men, and women whose fathers were poorer, were less likely to marry in the parish than others, largely as a result of differential mortality and migration. Of all adults of both sexes who remained in their home parish and thus generated complete lifetime records, richer individuals had greater lifetime fertility and more children alive at age ten, than others. The age-specific fertility of richer women rises slightly sooner, and reaches a higher peak, than that of poorer women. These patterns persisted throughout the period of the sample (1824-1896). Thus, wealth appears, even during the demographic transition in an egalitarian society, to have influenced lifetime reproductive success positively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29881/1/0000234.pd
    corecore