112 research outputs found

    Evaluating Multi-Species Cover Crops for Forage Production

    Get PDF
    Cover crops offer potential benefits for improving soil health, but establishment and management costs can be expensive. One way for farmers to recover these costs is to graze the forage, which benefits producers by integrating crop and animal production. More information is needed on the potential forage quantity and quality for grazing livestock of cover crops and mixed species of cover crops. Researchers have suggested that different plant species complement each other, but additional work is needed to determine how best to balance forage production and how competitive the various species are when added to a mix. Sixteen treatments were drill-seeded at the Southeast Research and Extension Center near Columbus, Kansas, in August 2014 and 2015. Each treatment consisted of a three-way mix representing popular cover crops from the plant families Brassicaceae (brassicas), Poaceae (grasses), and Fabaceae (legumes). Eight species were planted, including forage radish (Raphanus sativus), purple-top turnip (Brassica rapa), oat (Avena sativa), rye (Secale cereale), barley (Hordeum vulgare), wheat (Triticum aestivum), Austrian winter pea (Pisum sativum subsp. arvense), and berseem clover (Trifolium alexandrinum). Small areas of each plot were clipped at 45-, 74-, and 91-day intervals each year. The clipped biomass was then weighed, sorted, and dried to determine biomass as well as species composition. In 2014 the average biomass produced at 45, 74, and 91 days was 1,250, 3,290, and 3,050 lb/ac, respectively. These range from 470–1,940 lb/ac 45 days after planting to 1,790–4,440 lb/ac at 91 days after planting, depending on the cover crop mix. In 2015, the average biomass at 45, 74, and 91 days was 1,120, 1,604, and 2,273 lb/ac, respectively. These range from 557-1,876 lb/ ac 45 days after planting to 1,100–4,127 lb/ac at 91 days after planting, depending on the cover crop mix

    Improving Yield Stability and Resiliency of Agronomic Production Systems in Southeast Kansas

    Get PDF
    Soil health is a critical determinant of crop performance. Soil physical, chemical, and biological properties can be modified through production practices such as tillage. Use of cover crops has been shown to benefit soil health and may improve productive capacity of soils. High rainfall and intense crop production practices limit the ability to implement cover crops in current production systems in southeast Kansas. This study explores potential management of cover crops and their contribution to soil health, crop productivity, and animal grazing

    Growth, Forage Quality, and Economics of Cover Crop Mixes for Grazing

    Get PDF
    Cover crops offer many potential benefits to crop production. They diversify the plant system, increase soil organic matter, and reduce erosion. However, they can be expensive to plant. By grazing the cover crops, farmers can recover some of the expenses associated with growing cover crops. Grazing also increases the nutrients to the field, further enhancing the productive capacity of the soil. Many cover crop mixtures are currently available on the market. However, it is not clear how useful the multi-species cover crops mixtures are, or their potential impact on economics of production. Moreover, many of the cover crop mixes being sold contain species that are potentially harmful to either humans or cattle. For example, some cattle are sensitive to hairy vetch (Farney et al., 2016). Buckwheat, a valuable and frequently used cover crop, causes serious allergic reactions in some human populations, making it especially unsuitable for growing regions that also produce wheat. To avoid cross-contamination of buckwheat with wheat, the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) requires an exclusion of buckwheat by 30 feet and two years from any commercial wheat production fields. NRCS has restricted the use of buckwheat in cover crop mixes for regions that grow wheat (NRCS, 2016). Many plants are good for planting as cover crops. There are three general categories of plants that are commonly used as cover crops, each with a unique growth habit and rooting structure. In this study, we chose common plants from each of these major groups: grasses, brassicas, and legumes. The soils in southeast Kansas were developed under the tallgrass prairie. Grasses have a dense, fibrous rooting system that is ideally suited for growth in the claypan soils of this region. Studies of soil microbial activity indicate that grasses may enhance microbial activity at lower soil layers, better using more of the soil profile for extracting nutrients and water (Hsiao et al., 2018). The grasses chosen for this study included winter barley, winter oats, cereal rye, and winter wheat. Brassicas have a taproot that creates large holes in the soil called macropores. These macropores break up the soil structure. As the large taproot decays, it supports microbial activity and further improves the soil structure. Brassicas also release unique compounds into the soil, such as glucosinolates, that have been shown to suppress disease organisms in the soil such as fungi and nematodes. The brassicas used in this study included tillage radish and purple-top turnip. Legumes improve the soil by increasing the soil nitrogen. Most legumes have a fibrous rooting system. The legumes used in this study included berseem clover and Austrian winter pea

    Grid-Enabling a Vibroacoustic Analysis Application

    Get PDF
    This paper describes the process of grid-enabling a vibroacoustic analysis application using the Globus Toolkit 3.2.1. This is the first step in a project intended to grid-enable a suite of tools being developed as a service-oriented architecture for spacecraft telemetry analysis. Many of the applications in the suite are compute intensive and would benefit from significantly improved performance. In this paper we show the advantage of using Globus to grid-enable a single tool in a vibroacoustic analysis flow, with the result that using as few as eleven nodes, that tool’s runtime improved by a factor of eight. While communication overhead does affect performance, these results also indicate that coordinated communication and execution scheduling as part of workflow management would be able to significantly improve overall efficiency. In the larger context, our experience also shows that the service-oriented architecture approach, using grid computing tools, can provide a more flexible system design, in addition to improved performance and increased utilization of resources. We also provide some lessons learned in using the Globus Toolkit

    Evaluating student attitudes and learning at remote collegiate soil judging events

    Get PDF
    As with many aspects of teaching, the COVID-19 pandemic forced soil judging teams to attempt new strategies towards achieving student learning outcomes. Soil judging Regions IV and V hosted remote regional contests in October 2020 in place of traditional, in-person contests typically held each fall. We conducted pre- and post-contest surveys to assess student learning outcomes, attitudes, and reflections on the remote contest experience compared to past, in-person contest experiences. We received 108 total responses from students who participated in the Region IV and Region V remote soil judging contests (>80% response rate). In self-reported learning outcomes, there were no significant gains post-contest and there were minimal differences between students in Regions IV and V. Female students, students with more soil judging experience, and students who had taken more soil science courses agreed more strongly that soil science is important, that they planned to pursue careers in soil science, and that they gained important skills from soil judging. Finally, students who previously participated in contests reported that they gained more knowledge and enjoyed in-person contests more than the remote contests held in Fall 2020. Thus, while it is possible to replicate some aspects of the soil judging experience in a remote contest, other aspects that are critical to student engagement are lost when teams are unable to gather at the contest location and examine soils in the field.This article is published as Owen, Rachel K., Amber Anderson, Ammar Bhandari, Kerry Clark, Morgan Davis, Ashlee Dere, Nic Jelinski et al. "Evaluating student attitudes and learning at remote collegiate soil judging events." Natural Sciences Education 50, no. 2 (2021): e20065. doi:10.1002/nse2.20065. Posted with permission.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q02001, doi:10.1029/2008GC002236.Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal “shield building” stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866–0.512909, 206Pb/204Pb: 18.904–19.054; La/Sm: 3.71–4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912–0.512948, 206Pb/204Pb: 19.959–20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999–0.513050, 206Pb/204Pb: 19.080–19.237; La/Sm: 5.73–8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.JBT acknowledges financial support from the French Institut National des Sciences de l’Univers. The isotope work at SDSU was made possible by NSF and Keck grants to BBH

    Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities

    Get PDF
    Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations
    • …
    corecore