127 research outputs found
Study protocol for THINK : a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types
Introduction: NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3 zeta signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning.
Methods and analysis: This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3x10(8), 1x10(9) and 3x10(9) NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours.
Ethics approval and dissemination: Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals
A Non-Antibiotic-Disrupted Gut Microbiome Is Associated With Clinical Responses to CD19-Car-T Cell Cancer Immunotherapy
Increasing evidence suggests that the gut microbiome may modulate the efficacy of cancer immunotherapy. In a B cell lymphoma patient cohort from five centers in Germany and the United States (Germany, n = 66; United States, n = 106; total, n = 172), we demonstrate that wide-spectrum antibiotics treatment (\u27high-risk antibiotics\u27) prior to CD19-targeted chimeric antigen receptor (CAR)-T cell therapy is associated with adverse outcomes, but this effect is likely to be confounded by an increased pretreatment tumor burden and systemic inflammation in patients pretreated with high-risk antibiotics. To resolve this confounding effect and gain insights into antibiotics-masked microbiome signals impacting CAR-T efficacy, we focused on the high-risk antibiotics non-exposed patient population. Indeed, in these patients, significant correlations were noted between pre-CAR-T infusion Bifidobacterium longum and microbiome-encoded peptidoglycan biosynthesis, and CAR-T treatment-associated 6-month survival or lymphoma progression. Furthermore, predictive pre-CAR-T treatment microbiome-based machine learning algorithms trained on the high-risk antibiotics non-exposed German cohort and validated by the respective US cohort robustly segregated long-term responders from non-responders. Bacteroides, Ruminococcus, Eubacterium and Akkermansia were most important in determining CAR-T responsiveness, with Akkermansia also being associated with pre-infusion peripheral T cell levels in these patients. Collectively, we identify conserved microbiome features across clinical and geographical variations, which may enable cross-cohort microbiome-based predictions of outcomes in CAR-T cell immunotherapy
IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation
Graft-versus-host disease (GvHD) remains a major cause of transplant-related mortality. Interleukin-2 (IL-2) plus sirolimus (SIR) synergistically reduces acute GvHD in rodents and promotes regulatory T cells. This phase II trial tested the hypothesis that IL-2 would facilitate STAT5 phosphorylation in donor T cells, expand regulatory T cells, and ameliorate GvHD. Between 16th April 2014 and 19th December 2015, 20 patients received IL-2 (200,000 IU/m2 thrice weekly, days 0 to +90) with SIR (5–14 ng/mL) and tacrolimus (TAC) (3–7 ng/mL) after HLA-matched related or unrelated allogeneic hematopoietic cell transplantation (HCT). The study was designed to capture an increase in regulatory T cells from 16.0% to more than 23.2% at day +30. IL-2/SIR/TAC significantly increased regulatory T cells at day +30 compared to our published data with SIR/TAC (23.8% vs. 16.0%, P=0.0016; 0.052 k/uL vs. 0.037 k/uL, P=0.0163), achieving the primary study end point. However, adding IL-2 to SIR/TAC led to a fall in regulatory T cells by day +90 and did not reduce acute or chronic GvHD. Patients who discontinued IL-2 before day +100 showed a suggested trend toward less grade II-IV acute GvHD (16.7% vs. 50%, P=0.1475). We surmise that the reported accumulation of IL-2 receptors in circulation over time may neutralize IL-2, lead to progressive loss of regulatory T cells, and offset its clinical efficacy. The amount of phospho-STAT3+ CD4+ T cells correlated with donor T-cell activation and acute GvHD incidence despite early T-cell STAT5 phosphorylation by IL-2. Optimizing IL-2 dosing and overcoming cytokine sequestration by soluble IL-2 receptor may sustain lasting regulatory T cells after transplantation. However, an approach to target STAT3 is needed to enhance GvHD prevention. (clinicaltrials.gov identifier: 01927120)
Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma
CD19 CAR T-cell therapy with axicabtagene ciloleucel (axi-cel) for relapsed or refractory (R/R) large B cell lymphoma (LBCL) may lead to durable remissions, however, prolonged cytopenias and infections may occur. In this single center retrospective study of 85 patients, we characterized immune reconstitution and infections for patients remaining in remission after axi-cel for LBCL. Prolonged cytopenias (those occurring at or after day 30 following infusion) were common with >= grade 3 neutropenia seen in 21/70 (30-0%) patients at day 30 and persisting in 3/31 (9-7%) patients at 1 year. B cells were undetectable in 30/34 (88-2%) patients at day 30, but were detected in 11/19 (57-9%) at 1 year. Median IgG levels reached a nadir at day 180. By contrast, CD4 T cells decreased from baseline and were persistently low with a median CD4 count of 155 cells/μl at 1 year after axi-cel (n=19, range 33 – 269). In total, 23/85 (27-1%) patients received IVIG after axi-cel, and 34/85 (40-0%) received G-CSF. Infections in the first 30 days occurred in 31/85 (36-5%) patients, of which 11/85 (12-9%) required intravenous antibiotics or hospitalization (“severe”) and were associated with cytokine release syndrome (CRS), neurotoxicity, tocilizumab use, corticosteroid use, and bridging therapy on univariate analyses. After day 30, 7 severe infections occurred, with no late deaths due to infection. Prolonged cytopenias are common following axi-cel therapy for LBCL and typically recover with time. Most patients experience profound and prolonged CD4 T cell immunosuppression without severe infection
In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation
T-helper 1 and T-helper 17 lymphocytes mediate acute graft-versus-host disease (GvHD). Interleukin 12 is critical for T-helper 1 differentiation and interleukin 23 for T-helper 17 maintenance. Interleukin 12 and 23 are heterodimeric cytokines that share the p40 subunit (IL-12/IL-23p40). In a randomized, blinded, placebo-controlled trial, we examined the biological impact and clinical outcomes following IL-12/IL-23p40 neutralization using ustekinumab. Thirty patients received peripheral blood mobilized hematopoietic cell transplantation (HCT) from HLA-matched sibling or unrelated donors, received sirolimus plus tacrolimus as GvHD prophylaxis, and were randomized to ustekinumab versus placebo with 1:1 allocation after stratification by donor type. The primary end point of the trial was the mean percentage (%) T-regulatory (Treg) cells on day 30 post HCT. Ustekinumab was delivered by subcutaneous injection on day −1 and day +20 after transplantation. On day 30 post transplant, no significant difference in % Treg was observed. Ustekinumab suppressed serum IL-12/IL-23p40 levels. Host-reactive donor alloresponse at days 30 and 90 after transplantation was polarized with significant reduction in IL-17 and IFN-α production and increase in IL-4. No toxicity attributed to ustekinumab was observed. Overall survival and National Institute of Health moderate/severe chronic GvHD-free, relapse-free survival were significantly improved among ustekinumab-treated patients. No significant improvements were observed in acute or chronic GvHD, relapse, or non-relapse mortality. These data provide first evidence that IL-12/IL-23p40 neutralization can polarize donor anti-host alloresponse in vivo and provide initial clinical efficacy evidence to be tested in subsequent trials. (Trial registered at clinicaltrials.gov identifier: 01713400.
Hyperdominance in Amazonian Forest Carbon Cycling
While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region
Recommended from our members
The pace of life for forest trees.
Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes
Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry
Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Global patterns of vascular plant alpha diversity
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity
- …