43 research outputs found

    Electronic system for drift clock calculation and synchronization for seafloor observatory

    Get PDF
    The paper describes a new electronic device that allows an easily measurement of the drift between a reference time source (usually GPS) and an atomic rubidium clock which is normally used in seafloor observatories. The Rubidium clock is used in autonomous seafloor observatories to supply reference time for data acquisition with the precision of milliseconds. During the deployment of seafloor observatory the clock is synchronized with GPS. It is critical to evaluate the time drift between the clock and the GPS, when the observatory is recovered. In fact, thanks to an accurate drift measurement it’s possible to have a correct timestamp for data series collected by seafloor observatory’s instruments. The device described in this paper is composed by an Arduino mega shield integrated with other electronic circuits. The device is easily customizable for different clocks in fact Arduino IDE allows development of the desired features for the rubidium clock used in the specific application.Peer Reviewe

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome

    Get PDF
    MarsiteCruise was undertaken in October/November 2014 in the Sea of Marmara to gain detailed insight into the fate of fluids migrating within the sedimentary column and partially released into the water column. The overall objective of the project was to achieve a more global understanding of cold-seep dynamics in the context of a major active strike-slip fault. Five remotely operated vehicle (ROV) dives were performed at selected areas along the North Anatolian Fault and inherited faults. To efficiently detect, select and sample the gas seeps, we applied an original procedure. It combines sequentially (1) the acquisition of ship-borne multibeam acoustic data from the water column prior to each dive to detect gas emission sites and to design the tracks of the ROV dives, (2) in situ and real-time Raman spectroscopy analysis of the gas stream, and (3) onboard determination of molecular and isotopic compositions of the collected gas bubbles. The in situ Raman spectroscopy was used as a decision-making tool to evaluate the need for continuing with the sampling of gases from the discovered seep, or to move to another one. Push cores were gathered to study buried carbonates and pore waters at the surficial sediment, while CTD-Rosette allowed collecting samples to measure dissolved-methane concentration within the water column followed by a comparison with measurements from samples collected with the submersible Nautile during the Marnaut cruise in 2007. Overall, the visited sites were characterized by a wide diversity of seeps. CO2- and oil-rich seeps were found at the westernmost part of the sea in the Tekirdag Basin, while amphipods, anemones and coral populated the sites visited at the easternmost part in the Cinarcik Basin. Methane-derived authigenic carbonates and bacterial mats were widespread on the seafloor at all sites with variable size and distributions. The measured methane concentrations in the water column were up to 377 ÎŒmol, and the dissolved pore-water profiles indicated the occurrence of sulfate depleting processes accompanied with carbonate precipitation. The pore-water profiles display evidence of biogeochemical transformations leading to the fast depletion of seawater sulfate within the first 25-cm depth of the sediment. These results show that the North Anatolian Fault and inherited faults are important migration paths for fluids for which a significant part is discharged into the water column, contributing to the increase of methane concentration at the bottom seawater and favoring the development of specific ecosystems

    NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea

    Get PDF
    The NEutrinoMediterranean Observatory—Submarine Network 1 (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to marine ecosystems, marine mammals, climate change, and geohazards

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    Special issue 9th MARTECH: International Workshop on Marine Technology: 16-18 June 2021, Vigo, Spain.-- 2 pages, 1 figureThe European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologiesPeer reviewe

    The EMSO Generic Instrument Module (EGIM): Standardized and interoperable instrumentation for ocean observation

    Get PDF
    The oceans are a fundamental source for climate balance, sustainability of resources and life on Earth, therefore society has a strong and pressing interest in maintaining and, where possible, restoring the health of the marine ecosystems. Effective, integrated ocean observation is key to suggesting actions to reduce anthropogenic impact from coastal to deep-sea environments and address the main challenges of the 21st century, which are summarized in the UN Sustainable Development Goals and Blue Growth strategies. The European Multidisciplinary Seafloor and water column Observatory (EMSO), is a European Research Infrastructure Consortium (ERIC), with the aim of providing long-term observations via fixed-point ocean observatories in key environmental locations across European seas from the Arctic to the Black Sea. These may be supported by ship-based observations and autonomous systems such as gliders. In this paper, we present the EMSO Generic Instrument Module (EGIM), a deployment ready multi-sensor instrumentation module, designed to measure physical, biogeochemical, biological and ecosystem variables consistently, in a range of marine environments, over long periods of time. Here, we describe the system, features, configuration, operation and data management. We demonstrate, through a series of coastal and oceanic pilot experiments that the EGIM is a valuable standard ocean observation module, which can significantly improve the capacity of existing ocean observatories and provides the basis for new observatories. The diverse examples of use included the monitoring of fish activity response upon oceanographic variability, hydrothermal vent fluids and particle dispersion, passive acoustic monitoring of marine mammals and time series of environmental variation in the water column. With the EGIM available to all the EMSO Regional Facilities, EMSO will be reaching a milestone in standardization and interoperability, marking a key capability advancement in addressing issues of sustainability in resource and habitat management of the oceans

    Embriaco, Davide. (2013). Oxygen meter dataset (AADI Optode 3830 @ 1 Hz) from INGV/SN-4 seafloor platform during MARSITE project in Marmara Sea site (Marmara Sea), part of EMSO network.

    No full text
    The Optode sensor measures the dissolved oxygen concentration in sea water using a lifetime-based luminescence quenching principle. The dataset includes a measured device temperature channel and the oxygen saturation values [%] computed from concentration and temperature. The sensor is used to monitor the oxygen concentration dissolved in sea water and to provide oxygen concentration values needed by the methane sensor calibration formula

    Embriaco, Davide. (2009). CTD dataset (SBE 16plus @ 1 sample / 10 min) from INGV/SN-4 seafloor platform during ESONET-MARMARA-DM project in Marmara Sea site (Marmara Sea), part of EMSO network.

    No full text
    The dataset contains sea bottom Conductivity, Temperature and Pressure data acquired by a SBE 16 plus device installed on SN4 station. Conductivity, Temperature and Pressure are used to monitor the sea water masses variation in the canyon where the SN4 observatory was deployed. From CTD data it is possible to compute the salinity which is a parameter needed to evaluate the true dissolved oxygen concentration from raw oxygen concentration measured by the Optode Oxygen sensor. The Conductivity, Temperature and Pressure are data acquired by the CTD at each minutes 08,18,28,38,48,58 of every hour of the mission
    corecore