67 research outputs found
Individual and combined effects of chemical and mechanical power on postoperative pulmonary complications: a secondary analysis of the REPEAT study
Introduction: Intra-operative supplemental oxygen and mechanical ventilation expose the lungs to potentially injurious energy. This can be quantified as 'chemical power' and 'mechanical power', respectively. In this study, we sought to determine if intra-operative chemical and mechanical power, individually and/or in combination, are associated with postoperative pulmonary complications. Methods: Using an individual patient data analysis of three randomised clinical trials of intra-operative ventilation, we summarised intra-operative chemical and mechanical power using time-weighted averages. We evaluated the association between intra-operative chemical and mechanical power and a collapsed composite of postoperative pulmonary complications using multivariable logistic regression to estimate the odds ratios related to the effect of 1 J.min-1 increase in chemical or mechanical power with adjustment for demographic and intra-operative characteristics. We also included an interaction term to assess for potential synergistic effects of chemical and mechanical power on postoperative pulmonary complications. Results: Of 3837 patients recruited to three individual trials, 2492 with full datasets were included in the analysis. Intra-operative time-weighted average (SD) chemical power was 10.2 (3.9) J.min-1 and mechanical power was 10.5 (4.4) J.min-1. An increase of 1 J.min-1 in chemical power was associated with 8% higher odds of postoperative pulmonary complications (OR 1.08, 95%CI 1.05-1.10, p < 0.001), while the same increase in mechanical power raised odds by 5% (OR 1.05, 95%CI 1.02-1.08, p = 0.003). We did not find evidence of a significant interaction between chemical and mechanical power (p = 0.40), suggestive of an additive rather than synergistic effect on postoperative pulmonary complications. Discussion: Both chemical and mechanical power are independently associated with postoperative pulmonary complications. Further work is required to determine causality
Atriobronchial Fistula Complicated by Septic Cerebral Air Emboli After Pulmonary Vein Ablation
Functionally mature CD4 and CD8 TCRalphabeta cells are generated in OP9-DL1 cultures from human CD34+ hematopoietic cells.
Human CD34(+) hematopoietic precursor cells cultured on delta-like ligand 1 expressing OP9 (OP9-DL1) stromal cells differentiate to T lineage cells. The nature of the T cells generated in these cultures has not been studied in detail. Since these cultures do not contain thymic epithelial cells which are the main cell type mediating positive selection in vivo, generation of conventional helper CD4(+) and cytotoxic CD8(+) TCRalphabeta cells is not expected. Phenotypically mature CD27(+)CD1(-) TCRgammadelta as well as TCRalphabeta cells were generated in OP9-DL1 cultures. CD8 and few mature CD4 single-positive TCRalphabeta cells were observed. Mature CD8 single-positive cells consisted of two subpopulations: one expressing mainly CD8alphabeta and one expressing CD8alphaalpha dimers. TCRalphabeta CD8alphaalpha and TCRgammadelta cells both expressed the IL2Rbeta receptor constitutively and proliferated on IL-15, a characteristic of unconventional T cells. CD8alphabeta(+) and CD4(+) TCRalphabeta cells were unresponsive to IL-15, but could be expanded upon TCR stimulation as mature CD8alphabeta(+) and CD4(+) T cells. These T cells had the characteristics of conventional T cells: CD4(+) cells expressed ThPOK, CD40L, and high levels of IL-2 and IL-4; CD8(+) cells expressed Eomes, Runx3, and high levels of granzyme, perforin, and IFN-gamma. Induction of murine or human MHC class I expression on OP9-DL1 cells had no influence on the differentiation of mature CD8(+) cells. Similarly, the presence of dendritic cells was not required for the generation of mature CD4(+) or CD8(+) T cells. These data suggest that positive selection of these cells is induced by interaction between T precursor cells.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
107 Armoring NKG2D CAR T cells with IL-18 improves in vivo anti-tumor activity
BackgroundWhilst delivering impressive clinical efficacy in certain hematological malignancies, Chimeric Antigen Receptor (CAR) T cell therapy has yet to deliver significant clinical impact across a broader array of cancer indications. Armoring CAR T through the co-expression of immune modifying cytokines is an approach that may aid anti-cancer activity but is currently at an embryonic stage of development. In this study, the potential benefit of expressing IL-18 alongside a NKG2D CAR was assessed.MethodsA series of retroviral vectors encoding the NKG2D CAR (a fusion of NKG2D with CD3z), a cell surface tag to facilitate cell selection and tracking (truncated CD19) either with or without full length IL-18 were compared. In certain vectors, a single shRNA targeting CD3z was included to generate allogeneic CAR T versions. All transgenes were delivered as a single vector expressed under the control of the retroviral promoter with individual 2A elements ensuring equimolar levels of protein expression. T cells transduced with the individual vectors were challenged in vitro and in vivo to determine the impact of IL-18 upon NKG2D CAR directed function.ResultsArmored NKG2D CAR T cells that included the IL-18 transgene showed high levels of IL-18 secretion in culture and increased levels of interferon gamma secretion upon antigen challenge as compared to non-armored NKG2D CAR T cells. Armored NKG2D CAR T cells also showed prolonged sequential target cell killing as compared to non-armored CAR T versions. Importantly, in an in vivo stress test where the dose of non-armored NKG2D T cells was reduced to a level where minimal anti-tumor activity and survival above control was seen using an established THP-1 model, armored CAR T cells showed enhanced anti-tumor activity (as determined by bioluminescence) and overall survival. Interestingly, at high doses of armored CAR T cells, toxicity was seen in some tumor bearing models. This toxicity was abrogated by systemic infusion of human IL-18 binding protein (IL-18BP).ConclusionsArmoring NKG2D CAR T cells with IL-18 resulting in increased in vitro and in vivo target-dependent anti-tumor activity. The transient toxicity observed with high doses of the armored CAR T in tumor bearing models was eliminated by IL-18BP. Together, these observations imply that armoring NKG2D CAR T cells with IL-18 is likely to drive improved anti-tumor activity of the CAR T cell in line with previous publications1 2 while the presence of systemic IL-18BP3 should negate possible toxicities arising from high level constitutive expression of the cytokine.ReferencesChmielewski M, Abken H. Cell Reports 2017;21(11): 3205–32192.Hu B, Ren J, Luo Y, Keith B, Young R, Scholler J, Zhao Y, June C. Cell Reports 2017; 20(13): 3025–30333.Dinarello C, Novick D, Kim S, Kaplamski G. Frontiers in Immunology 2013;4;289</jats:sec
PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib
Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells
AbstractMost breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8+ T cells, and reduces macrophage and neutrophil infiltration. CD8+ T cells mediate the attenuated tumor phenotype observed upon RANK loss, whereas neutrophils, supported by RANK-expressing tumor cells, induce immunosuppression. RANKL inhibition increases the anti-tumor effect of immunotherapies in breast cancer through a tumor cell mediated effect. Comparably, pre-operative single-agent denosumab in premenopausal early-stage breast cancer patients from the Phase-II D-BEYOND clinical trial (NCT01864798) is well tolerated, inhibits RANK pathway and increases tumor infiltrating lymphocytes and CD8+ T cells. Higher RANK signaling activation in tumors and serum RANKL levels at baseline predict these immune-modulatory effects. No changes in tumor cell proliferation (primary endpoint) or other secondary endpoints are observed. Overall, our preclinical and clinical findings reveal that tumor cells exploit RANK pathway as a mechanism to evade immune surveillance and support the use of RANK pathway inhibitors to prime luminal breast cancer for immunotherapy.</jats:p
Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells.
Most breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8+ T cells, and reduces macrophage and neutrophil infiltration. CD8+ T cells mediate the attenuated tumor phenotype observed upon RANK loss, whereas neutrophils, supported by RANK-expressing tumor cells, induce immunosuppression. RANKL inhibition increases the anti-tumor effect of immunotherapies in breast cancer through a tumor cell mediated effect. Comparably, pre-operative single-agent denosumab in premenopausal early-stage breast cancer patients from the Phase-II D-BEYOND clinical trial (NCT01864798) is well tolerated, inhibits RANK pathway and increases tumor infiltrating lymphocytes and CD8+ T cells. Higher RANK signaling activation in tumors and serum RANKL levels at baseline predict these immune-modulatory effects. No changes in tumor cell proliferation (primary endpoint) or other secondary endpoints are observed. Overall, our preclinical and clinical findings reveal that tumor cells exploit RANK pathway as a mechanism to evade immune surveillance and support the use of RANK pathway inhibitors to prime luminal breast cancer for immunotherapy.We thank the patients who contributed to this study and acknowledge the clinical staff for their dedication. The D-BEYOND clinical trial was sponsored by Jules Bordet Institute, which was responsible for the management of the study. This work was supported by grants to E. Gonzalez-Suarez by MICINN (SAF2014-55997-R, SAF201786117-R) co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 682935), and Fundacio La Marato de TV3. We thank CERCA Programme/Generalitat de Catalunya for institutional support. P.P. and S.B. were and A.B. is recipient of a predoctoral grant from the MICINN. We are grateful to William C. Dougall and AMGEN, Inc. for supporting the design of the D-BEYOND trial and providing RANKL, RANK-Fc reagents, and RANK-/-mice. We thank the IDIBELL Animal Facility for their assistance with mouse colonies, Esther Castano and the scientific services of the University of Barcelona for their assistance with FACS analyses, and P. Gonzalez-Santamaria, G PerezChacon, and M Jimenez for critical reading of the manuscript. C.S. and B.N. are supported by the National Fund for Research (FNRS) and Televie. R.S. is supported by a grant from the Breast Cancer Research Foundation (BCRF), grant number 17-194. This work was also supported in part by the Cancer Center Support Grant of the National Institutes of Health (Grant Number P30CA008748). We thank Samira Majjaj and Delphine Vincent for technical assistance. We extend gratitude to the patients who participated in the D-BEYOND study. This clinical study has been supported by research funding from Amgen.N
Microwave-assisted on-spot derivatization for gas chromatography–mass spectrometry based determination of polar low molecular weight compounds in dried blood spots
- …
