5,679 research outputs found

    School related law : do principals know what they need to know? : a report presented in partial fulfilment of the requirements for the degree of Master of Educational Administration at Massey University

    Get PDF
    It is argued that the importance of the law in education has developed to the point where legal literacy for school principals is a core professional requirement. Although work to establish the level of legal literacy among principals has not been done in New Zealand, some commentators contend that a great number of school managers are still unaware of their legal obligations and duties. The assumption is made that the situation in this country is similar to that overseas as described in research carried out by a number of researchers in Australia and the United States. This study sought to determine if there are grounds to conclude that the overseas experience with regard to legal literacy is indeed mirrored here. To achieve this a small-scale exploratory research project involving six primary school principals was carried out to determine what knowledge and understandings, views and perceptions they had of school related law, and, in particular, to answer the following questions: 1. What levels of legal literacy are evident amongst a cross section of New Zealand principals? 2. Where do these principals gain their knowledge of school-related law from? 3. What legal risk management policies and practices have these principals implemented and to what extent have they been able to determine or test their effectiveness in meeting the school's legal obligations and in providing protection from litigation? 4. How far are these principals able to determine when issues they are dealing with need professional legal advice? 5. What suggestions did the principals have for improving the current situation? The findings of the study suggest that most have a limited knowledge of school­ related law and a poor understanding of the Principles of Natural Justice. If legal literacy means that they had sufficient knowledge to recognise a legal problem and to recognise the occasions for seeking professional advice then for many it would seem that they do not know what they need to know

    Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018

    Full text link
    As part of our study of the magnetic fields of AGN we have recently observed a large sample of blazars with the Very Long Baseline Array. Here we report the discovery of a striking two-component jet in the source 1055+018, consisting of an inner spine with a transverse magnetic field, and a fragmentary but distinct boundary layer with a longitudinal magnetic field. The polarization distribution in the spine strongly supports shocked-jet models while that in the boundary layer suggests interaction with the surrounding medium. This behavior suggests a new way to understand the differing polarization properties of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518, 1999 June 2

    Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest

    Get PDF
    Fire is one of the predominant drivers of the structural and functional dynamics of forest ecosystems. In recent years, novel fire regimes have posed a major challenge to the management of pyrodiverse forests. While previous research efforts have focused on quantifying the impacts of fire on above-ground forest biodiversity, how microbial communities respond to fire is less understood, despite their functional significance. Here, we describe the effects of time since fire, fire frequency and their interaction on soil and leaf litter fungal and bacterial communities from the pyrodiverse, Eucalyptus pilularis forests of south-eastern Australia. Using structural equation models, we also elucidate how fire can influence these communities both directly and indirectly through biotic-abiotic interactions. Our results demonstrate that fire is a key driver of litter and soil bacterial and fungal communities, with effects most pronounced for soil fungal communities. Notably, recently burnt forest hosted lower abundances of symbiotic ectomycorrhizal fungi and Acidobacteria in the soil, and basidiomycetous fungi and Actinobacteriota in the litter. Compared with low fire frequencies, high fire frequency increased soil fungal plant pathogens, but reduced Actinobacteriota. The majority of fire effects on microbial communities were mediated by fire-induced changes in litter and soil abiotic properties. For instance, recent and more frequent fire was associated with reduced soil sulphur, which led to an increase in soil fungal plant pathogens and saprotrophic fungi in these sites. Pathogenic fungi also increased in recently burnt forests that had a low fire frequency, mediated by a decline in litter carbon and an increase in soil pH in these sites. Synthesis. Our findings indicate that predicted increases in the frequency of fire may select for specific microbial communities directly and indirectly through ecological interactions, which may have functional implications for plants (increase in pathogens, decrease in symbionts), decomposition rates (declines in Actinobacteriota and Acidobacteriota) and carbon storage (decrease in ectomycorrhizal fungi). In the face of predicted shifts in wildfire regimes, which may exacerbate fire-induced changes in microbial communities, adaptive fire management and monitoring is required to address the potential functional implications of fire-altered microbial communities

    Mapping warm molecular hydrogen with Spitzer's Infrared Array Camera (IRAC)

    Full text link
    Photometric maps, obtained with Spitzer's Infrared Array Camera (IRAC), can provide a valuable probe of warm molecular hydrogen within the interstellar medium. IRAC maps of the supernova remnant IC443, extracted from the Spitzer archive, are strikingly similar to spectral line maps of the H2 pure rotational transitions that we obtained with the Infrared Spectrograph (IRS) instrument on Spitzer. IRS spectroscopy indicates that IRAC Bands 3 and 4 are indeed dominated by the H2 v=0-0 S(5) and S(7) transitions, respectively. Modeling of the H2 excitation suggests that Bands 1 and 2 are dominated by H2 v=1-0 O(5) and v=0-0 S(9). Large maps of the H2 emission in IC433, obtained with IRAC, show band ratios that are inconsistent with the presence of gas at a single temperature. The relative strengths of IRAC Bands 2, 3, and 4 are consistent with pure H2 emission from shocked material with a power-law distribution of gas temperatures. CO vibrational emissions do not contribute significantly to the observed Band 2 intensity. Assuming that the column density of H2 at temperatures T to T+dT is proportional to T raised to the power -b for temperatures up to 4000 K, we obtained a typical estimate of 4.5 for b. The power-law index, b, shows variations over the range 3 to 6 within the set of different sight-lines probed by the maps, with the majority of sight-lines showing b in the range 4 to 5. The observed power-law index is consistent with the predictions of simple models for paraboloidal bow shocks.Comment: 27 pages, including 11 figures. Accepted for publication in Ap

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    Effects of plant functional group removal on CO(2)fluxes and belowground C stocks across contrasting ecosystems

    Get PDF
    Changes in plant communities can have large effects on ecosystem carbon (C) dynamics and long-term C stocks. However, how these effects are mediated by environmental context or vary among ecosystems is not well understood. To study this, we used a long-term plant removal experiment set up across 30 forested lake islands in northern Sweden that collectively represent a strong gradient of soil fertility and ecosystem productivity. We measured forest floor CO(2)exchange and aboveground and belowground C stocks for a 22-yr experiment involving factorial removal of the two dominant functional groups of the boreal forest understory, namely ericaceous dwarf shrubs and feather mosses, on each of the 30 islands. We found that long-term shrub and moss removal increased forest floor net CO(2)loss and decreased belowground C stocks consistently across the islands irrespective of their productivity or soil fertility. However, we did see context-dependent responses of respiration to shrub removals because removals only increased respiration on islands of intermediate productivity. Both CO(2)exchange and C stocks responded more strongly to shrub removal than to moss removal. Shrub removal reduced gross primary productivity of the forest floor consistently across the island gradient, but it had no effect on respiration, which suggests that loss of belowground C caused by the removals was driven by reduced litter inputs. Across the island gradient, shrub removal consistently depleted C stocks in the soil organic horizon by 0.8 kg C/m(2). Our results show that the effect of plant functional group diversity on C dynamics can be relatively consistent across contrasting ecosystems that vary greatly in productivity and soil fertility. These findings underline the key role of understory vegetation in forest C cycling, and suggest that global change leading to changes in the relative abundance of both shrubs and mosses could impact on the capacity of boreal forests to store C

    Single versus dual antiplatelet therapy following peripheral arterial endovascular intervention for chronic limb threatening ischaemia:retrospective cohort study

    Get PDF
    ObjectivesAntiplatelet therapy following peripheral arterial endovascular intervention lacks high quality evidence to guide practice. The aim of this study was to assess the effect of three months of dual antiplatelet therapy on amputation-free survival following peripheral arterial endovascular intervention in patients with chronic limb threatening ischemia.MethodsA retrospective review of symptomatic patients undergoing primary peripheral arterial endovascular intervention over a seven-year period was performed. The primary outcome measure was amputation-free survival. A sample size calculation based on previous cohort studies suggested that 629 limbs would be required to show a difference between single and dual therapy. Kaplan-Meier estimates and multivariate logistic regression analysis of recorded baseline characteristics was performed to determine predictors of amputation-free survival. Dual antiplatelet therapy was routinely given for 3 months.Results754 limbs were treated with primary angioplasty and/or stenting over a 7-year period, 508 of these for chronic limb threatening ischemia. There was no difference in unadjusted amputation-free survival between patients with chronic limb threatening ischaemia taking single vs. dual antiplatelet therapy (69% vs. 74% respectively Log rank Chi2 = 0.1, p = .72). After adjusting for confounders, at 1 year there was also no significant difference in amputation-free survival between patients taking single vs. dual antiplatelet therapy [OR 0.8, 95% CI 0.5-1.2, p = .3]. There was no difference in rates of major bleeding between single and dual antiplatelet therapy.ConclusionsThere was no clear evidence of reduced amputation-free survival in patients with chronic limb threatening ischemia undergoing peripheral arterial endovascular intervention being treated with dual antiplatelet therapy for 3 months. This is at odds with other retrospective case series and highlights the limitations in basing clinical practice on such data. There is a need for an adequately powered, independent randomised trial to definitively answer the question

    Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types

    Get PDF
    Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above-and belowground ecosystem linkages by uni-and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above-and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes

    PKS 1510-089: A Head-On View of a Relativistic Jet

    Get PDF
    The gamma-ray blazar PKS 1510-089 has a highly superluminal milli-arcsecond jet at a position angle (PA) of -28 degrees and an arcsecond jet with an initial PA of 155 degrees. With a PA difference of 177 degrees between the arcsecond and milli-arcsecond jets, PKS 1510-089 is perhaps the most highly misaligned radio jet ever observed and serves as a graphic example of projection effects in a highly beamed relativistic jet. Here we present the results of observations designed to bridge the gap between the milli-arcsecond and arcsecond scales. We find that a previously detected ``counter-feature'' to the arcsecond jet is directly fed by the milli-arcsecond jet. This feature is located 0.3" from the core, corresponding to a de-projected distance of 30 kiloparsecs. The feature appears to be dominated by shocked emission and has an almost perfectly ordered magnetic field along its outside edge. We conclude that it is most likely a shocked bend, viewed end-on, where the jet crosses our line of sight to form the southern arcsecond jet. While the bend appears to be nearly 180 degrees when viewed in projection, we estimate the intrinsic bending angle to be between 12 and 24 degrees. The cause of the bend is uncertain; however, we favor a scenario where the jet is bent after it departs the galaxy, either by ram pressure due to winds in the intracluster medium or simply by the density gradient in the transition to the intergalactic medium.Comment: 8 pages, 4 figures, Accepted for publication in Ap

    Unraveling the directional link between adiposity and inflammation: a bidirectional mendelian randomization approach

    Get PDF
    <b>Context</b>: Associations between adiposity and circulating inflammation markers are assumed to be causal, although the direction of the relationship has not been proven. <b>Objective</b>: The aim of the study was to explore the causal direction of the relationship between adiposity and inflammation using a bidirectional Mendelian randomization approach. <b>Methods</b>: In the PROSPER study of 5804 elderly patients, we related C-reactive protein (CRP) single nucleotide polymorphisms (SNPs) (rs1800947 and rs1205) and adiposity SNPs (FTO and MC4R) to body mass index (BMI) as well as circulating levels of CRP and leptin. We gave each individual two allele scores ranging from zero to 4, counting each pair of alleles related to CRP levels or BMI. <b>Results</b>: With increasing CRP allele score, there was a stepwise decrease in CRP levels (P for trend < 0.0001) and a 1.98 mg/liter difference between extremes of the allele score distribution, but there was no associated change in BMI or leptin levels (P ≥ 0.89). By contrast, adiposity allele score was associated with 1) an increase in BMI (1.2 kg/m2 difference between extremes; P for trend 0.002); 2) an increase in circulating leptin (5.77 ng/ml difference between extremes; P for trend 0.0027); and 3) increased CRP levels (1.24 mg/liter difference between extremes; P for trend 0.002). <b>Conclusions</b>: Greater adiposity conferred by FTO and MC4R SNPs led to higher CRP levels, with no evidence for any reverse pathway. Future studies should extend our findings to other circulating inflammatory parameters. This study illustrates the potential power of Mendelian randomization to dissect directions of causality between intercorrelated metabolic factors
    corecore