387 research outputs found

    Cliffordons

    Full text link
    At higher energies the present complex quantum theory with its unitary group might expand into a real quantum theory with an orthogonal group, broken by an approximate ii operator at lower energies. Implementing this possibility requires a real quantum double-valued statistics. A Clifford statistics, representing a swap (12) by a difference γ1γ2\gamma_1-\gamma_2 of Clifford units, is uniquely appropriate. Unlike the Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein, and para- statistics, which are tensorial and single-valued, and unlike anyons, which are confined to two dimensions, Clifford statistics are multivalued and work for any dimensionality. Nayak and Wilczek proposed a Clifford statistics for the fractional quantum Hall effect. We apply them to toy quanta here. A complex-Clifford example has the energy spectrum of a system of spin-1/2 particles in an external magnetic field. This supports the proposal that the double-valued rotations --- spin --- seen at current energies might arise from double-valued permutations --- swap --- to be seen at higher energies. Another toy with real Clifford statistics illustrates how an effective imaginary unit ii can arise naturally within a real quantum theory.Comment: 15 pages, no figures; original title ("Clifford statistics") changed; to appear in J. Math. Phys., 42, 2001. Key words: Clifford statistics, cliffordons, double-valued representations of permutation groups, spin, swap, imaginary unit ii, applications to quantum space-time and the Standard Model. Some of these results were presented at the American Physical Society Centennial Meeting, Atlanta, March 25, 199

    Goal-conflict detection based on temporal satisfiability checking

    Get PDF
    Goal-oriented requirements engineering approaches propose capturing how a system should behave through the speci ca- tion of high-level goals, from which requirements can then be systematically derived. Goals may however admit subtle situations that make them diverge, i.e., not be satis able as a whole under speci c circumstances feasible within the domain, called boundary conditions . While previous work al- lows one to identify boundary conditions for con icting goals written in LTL, it does so through a pattern-based approach, that supports a limited set of patterns, and only produces pre-determined formulations of boundary conditions. We present a novel automated approach to compute bound- ary conditions for general classes of con icting goals expressed in LTL, using a tableaux-based LTL satis ability procedure. A tableau for an LTL formula is a nite representation of all its satisfying models, which we process to produce boundary conditions that violate the formula, indicating divergence situations. We show that our technique can automatically produce boundary conditions that are more general than those obtainable through existing previous pattern-based approaches, and can also generate boundary conditions for goals that are not captured by these patterns

    Clifford algebra as quantum language

    Get PDF
    We suggest Clifford algebra as a useful simplifying language for present quantum dynamics. Clifford algebras arise from representations of the permutation groups as they arise from representations of the rotation groups. Aggregates using such representations for their permutations obey Clifford statistics. The vectors supporting the Clifford algebras of permutations and rotations are plexors and spinors respectively. Physical spinors may actually be plexors describing quantum ensembles, not simple individuals. We use Clifford statistics to define quantum fields on a quantum space-time, and to formulate a quantum dynamics-field-space-time unity that evades the compactification problem. The quantum bits of history regarded as a quantum computation seem to obey a Clifford statistics.Comment: 13 pages, no figures. Some of these results were presented at the American Physical Society Centennial Meeting, Atlanta, March 25, 199

    Simplicial quantum dynamics

    Full text link
    Present-day quantum field theory can be regularized by a decomposition into quantum simplices. This replaces the infinite-dimensional Hilbert space by a high-dimensional spinor space and singular canonical Lie groups by regular spin groups. It radically changes the uncertainty principle for small distances. Gaugeons, including the gravitational, are represented as bound fermion-pairs, and space-time curvature as a singular organized limit of quantum non-commutativity. Keywords: Quantum logic, quantum set theory, quantum gravity, quantum topology, simplicial quantization.Comment: 25 pages. 1 table. Conference of the International Association for Relativistic Dynamics, Taiwan, 201

    Pramipexole restores depressed transmission in the ventral hippocampus following MPTP-lesion

    Get PDF
    The hippocampus has a significant association with memory, cognition and emotions. The dopaminergic projections from both the ventral tegmental area and substantia nigra are thought to be involved in hippocampal activity. To date, however, few studies have investigated dopaminergic innervation in the hippocampus or the functional consequences of reduced dopamine in disease models. Further complicating this, the hippocampus exhibits anatomical and functional differentiation along its dorso-ventral axis. In this work we investigated the role of dopamine on hippocampal long term potentiation using D-amphetamine, which stimulates dopamine release, and also examined how a dopaminergic lesion affects the synaptic transmission across the anatomic subdivisions of the hippocampus. Our findings indicate that a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced dopaminergic lesion has time-dependent effects and impacts mainly on the ventral region of the hippocampus, consistent with the density of dopaminergic innervation. Treatment with a preferential D3 receptor agonist pramipexole partly restored normal synaptic transmission and Long-Term Potentiation. These data suggest a new mechanism to explain some of the actions of pramipexole in Parkinson´s diseas

    Predicting Adverse Outcomes for Shiga Toxin–Producing Escherichia coli Infections in Emergency Departments

    Get PDF
    Objective: To assess the performance of a hemolytic uremic syndrome (HUS) severity score among children with Shiga toxin-producing Escherichia coli (STEC) infections and HUS by stratifying them according to their risk of adverse events. The score has not been previously evaluated in a North American acute care setting. Study design: We reviewed medical records of children \u3c18 years old infected with STEC and treated in 1 of 38 participating emergency departments in North America between 2011 and 2015. The HUS severity score (hemoglobin [g/dL] plus 2-times serum creatinine [mg/dL]) was calculated using first available laboratory results. Children with scores \u3e13 were designated as high-risk. We assessed score performance to predict severe adverse events (ie, dialysis, neurologic complication, respiratory failure, and death) using discrimination and net benefit (ie, threshold probability), with subgroup analyses by age and day-of-illness. Results: A total of 167 children had HUS, of whom 92.8% (155/167) had relevant data to calculate the score; 60.6% (94/155) experienced a severe adverse event. Discrimination was acceptable overall (area under the curve 0.71, 95% CI 0.63-0.79) and better among children \u3c5 years old (area under the curve 0.77, 95% CI 0.68-0.87). For children \u3c5 years, greatest net benefit was achieved for a threshold probability \u3e26%. Conclusions: The HUS severity score was able to discriminate between high- and low-risk children \u3c5 years old with STEC-associated HUS at a statistically acceptable level; however, it did not appear to provide clinical benefit at a meaningful risk threshold

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Full text link
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z~2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with 1-sigma detections of emission lines to f > 2.5x10^{-18} erg/s/cm^2, means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^{9.5} M_sun) than previously studied z~2 emission-line galaxies. Despite their lower mass, the galaxies have OIII/Hb ratios which are very similar to previously studied z~2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the OIII emission line is more spatially concentrated than the Hb emission line with 98.1 confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(OIII)/L(0.5-10 keV) ratio is intermediate between typical z~0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked OIII spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.Comment: ApJ accepted. 8 pages, 6 figure

    Blockade of MMP14 Activity in Murine Breast Carcinomas: Implications for Macrophages, Vessels, and Radiotherapy

    Get PDF
    Background: Matrix metalloproteinase (MMP) 14 may mediate tumor progression through vascular and immune-modulatory effects. Methods: Orthotopic murine breast tumors (4T1 and E0771 with high and low MMP14 expression, respectively; n = 5-10 per group) were treated with an anti-MMP14 inhibitory antibody (DX-2400), IgG control, fractionated radiation therapy, or their combination. We assessed primary tumor growth, transforming growth factor β (TGFβ) and inducible nitric oxide synthase (iNOS) expression, macrophage phenotype, and vascular parameters. A linear mixed model with repeated observations, with Mann-Whitney or analysis of variance with Bonferroni post hoc adjustment, was used to determine statistical significance. All statistical tests were two-sided. Results: DX-2400 inhibited tumor growth compared with IgG control treatment, increased macrophage numbers, and shifted the macrophage phenotype towards antitumor M1-like. These effects were associated with a reduction in active TGFβ and SMAD2/3 signaling. DX-2400 also transiently increased iNOS expression and tumor perfusion, reduced tissue hypoxia (median % area: control, 20.2%, interquartile range (IQR) = 6.4%-38.9%; DX-2400: 1.2%, IQR = 0.2%-3.2%, P = .044), and synergistically enhanced radiation therapy (days to grow to 800mm3: control, 12 days, IQR = 9-13 days; DX-2400 plus radiation, 29 days, IQR = 26-30 days, P < .001) in the 4T1 model. The selective iNOS inhibitor, 1400W, abolished the effects of DX-2400 on vessel perfusion and radiotherapy. On the other hand, DX-2400 was not capable of inducing iNOS expression or synergizing with radiation in E0771 tumors. Conclusion: MMP14 blockade decreased immunosuppressive TGFβ, polarized macrophages to an antitumor phenotype, increased iNOS, and improved tumor perfusion, resulting in reduced primary tumor growth and enhanced response to radiation therapy, especially in high MMP14-expressing tumor

    Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson\u27s disease

    Full text link
    Iron accumulates gradually in the ageing brain. In Parkinson&rsquo;s disease, iron deposition within the substantia nigra is further increased, contributing to a heightened pro-oxidant environment in dopaminergic neurons. We hypothesise that individuals in high-income countries, where cereals and infant formulae have historically been fortified with iron, experience increased early-life iron exposure that predisposes them to age-related iron accumulation in the brain. Combined with genetic factors that limit iron regulatory capacity and/or dopamine metabolism, this may increase the risk of Parkinson&rsquo;s diseases. We propose to (a) validate a retrospective biomarker of iron exposure in children; (b) translate this biomarker to adults; (c) integrate it with in vivo brain iron in Parkinson&rsquo;s disease; and (d) longitudinally examine the relationships between early-life iron exposure and metabolism, brain iron deposition and Parkinson&rsquo;s disease risk. This approach will provide empirical evidence to support therapeutically addressing brain iron deposition in Parkinson&rsquo;s diseases and produce a potential biomarker of Parkinson&rsquo;s disease risk in preclinical individuals

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
    corecore