512 research outputs found
A Small-Scale Modification to the Lensing Kernel
Calculations of the Cosmic Microwave Background lensing power implemented
into the standard cosmological codes such as CAMB and CLASS usually treat the
surface of last scatter as an infinitely thin screen. However, since the CMB
anisotropies are smoothed out on scales smaller than the diffusion length due
to the effect of Silk damping, the photons which carry information about the
small-scale density distribution come from slightly earlier times than the
standard recombination time. The dominant effect is the scale dependence of the
mean redshift associated with the fluctuations during recombination. We find
that fluctuations at come from a characteristic
redshift of , while fluctuations at
come from a characteristic redshift of . We then estimate the
corrections to the lensing kernel and the related power spectra due to this
effect. We conclude that neglecting it would result in a deviation from the
true value of the lensing kernel at the half percent level at small CMB scales.
For an all-sky, noise-free experiment, this corresponds to a
shift in the observed temperature power spectrum on small scales ().Comment: 5 pages, 5 figure
The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum
Near-future cosmological observations targeted at investigations of dark
energy pose stringent requirements on the accuracy of theoretical predictions
for the clustering of matter. Currently, N-body simulations comprise the only
viable approach to this problem. In this paper we demonstrate that N-body
simulations can indeed be sufficiently controlled to fulfill these requirements
for the needs of ongoing and near-future weak lensing surveys. By performing a
large suite of cosmological simulation comparison and convergence tests we show
that results for the nonlinear matter power spectrum can be obtained at 1%
accuracy out to k~1 h/Mpc. The key components of these high accuracy
simulations are: precise initial conditions, very large simulation volumes,
sufficient mass resolution, and accurate time stepping. This paper is the first
in a series of three, with the final aim to provide a high-accuracy prediction
scheme for the nonlinear matter power spectrum.Comment: 18 pages, 22 figures, minor changes to address referee repor
The Lyman-alpha forest at redshifts 0.1 -- 1.6: good agreement between a large hydrodynamic simulation and HST spectra
We give a comprehensive statistical description of the Lyman-alpha absorption
from the intergalactic medium in a hydrodynamic simulation at redshifts
0.1-1.6, the range of redshifts covered by HST spectra of QSOs. We use the ENZO
code to make a 76 comoving Mpc cube simulation using 75 kpc cells, for a Hubble
constant of 71 km/s/Mpc. The best prior work, by \citet{dave99},used an SPH
simulation in a 15.6 Mpc box with an effective resolution of 245 kpc and
slightly different cosmological parameters. At redshifts z=2 this simulation is
different from data. \citet{tytler07b} found that the simulated spectra at z=2
have too little power on large scales, Lyman-alpha lines are too wide, there is
a lack high column density lines, and there is a lack of pixels with low flux.
Here we present statistics at z<1.6, including the flux distribution, the mean
flux, the effective opacity, and the power and correlation of the flux. We also
give statistics of the lyman alpha lines including the line width distribution,
the column density distribution, the number of lines per unit equivalent width
and redshift, and the correlation between the line width and column density. We
find that the mean amount of absorption in the simulated spectra changes
smoothly with redshift with DA(z)=0.01(1+z)^{2.25}. Both the trend and absolute
values are close to measurements of HST spectra by \citet{kirkman07a}. The
column density and line width distributions are also close to those measured
from HST spectra by \citet{janknecht06a}, except for the mode of the line width
distribution which is smaller in the HST spectra. Although some differences
that we saw at z=2 are too subtle to be seen in existing HST spectra, overall,
the simulation gives an good description of HST spectra at 0.1<z<1.6
Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps
We search for hidden mirror symmetries at large angular scales in the WMAP 7
year Internal Linear Combination map of CMB temperature anisotropies using
global pixel based estimators introduced for this aim. Two different axes are
found for which the CMB intensity pattern is anomalously symmetric (or
anti-symmetric) under reflection with respect to orthogonal planes at the
99.84(99.96)% CL (confidence level), if compared to a result for an arbitrary
axis in simulations without the symmetry. We have verified that our results are
robust to the introduction of the galactic mask. The direction of such axes is
close to the CMB kinematic dipole and nearly orthogonal to the ecliptic plane,
respectively. If instead the real data are compared to those in simulations
taken with respect to planes for which the maximal mirror symmetry is generated
by chance, the confidence level decreases to 92.39 (76.65)%. But when the
effect in question translates into the anomalous alignment between normals to
planes of maximal mirror (anti)-symmetry and these natural axes mentioned. We
also introduce the representation of the above estimators in the harmonic
domain, confirming the results obtained in the pixel one. The symmetry anomaly
is shown to be almost entirely due to low multipoles, so it may have a
cosmological and even primordial origin. Contrary, the anti-symmetry one is
mainly due to intermediate multipoles that probably suggests its
non-fundamental nature. We have demonstrated that these anomalies are not
connected to the known issue of the low variance in WMAP observations and we
have checked that axially symmetric parts of these anomalies are small, so that
the axes are not the symmetry ones.Comment: 18 pages, 10 figures, 2 tables. Consideration and discussion
expanded, 5 figures and 1 table added, main conclusions unchange
Sunyaev Zel'dovich Effect Observations of Strong Lensing Galaxy Clusters: Probing the Over-Concentration Problem
We have measured the Sunyaev Zel'dovich (SZ) effect for a sample of ten
strong lensing selected galaxy clusters using the Sunyaev Zel'dovich Array
(SZA). The SZA is sensitive to structures on spatial scales of a few
arcminutes, while the strong lensing mass modeling constrains the mass at small
scales (typically < 30"). Combining the two provides information about the
projected concentrations of the strong lensing clusters. The Einstein radii we
measure are twice as large as expected given the masses inferred from SZ
scaling relations. A Monte Carlo simulation indicates that a sample randomly
drawn from the expected distribution would have a larger median Einstein radius
than the observed clusters about 3% of the time. The implied overconcentration
has been noted in previous studies with smaller samples of lensing clusters. It
persists for this sample, with the caveat that this could result from a
systematic effect such as if the gas fractions of the strong lensing clusters
are substantially below what is expected.Comment: submitte
On the Baryon Fractions in Clusters and Groups of Galaxies
We present the baryon fractions of 2MASS groups and clusters as a function of
cluster richness using total and gas masses measured from stacked ROSAT X-ray
data and stellar masses estimated from the infrared galaxy catalogs. We detect
X-ray emission even in the outskirts of clusters, beyond r_200 for richness
classes with X-ray temperatures above 1 keV. This enables us to more accurately
determine the total gas mass in these groups and clusters. We find that the
optically selected groups and clusters have flatter temperature profiles and
higher stellar-to-gas mass ratios than the individually studied, X-ray bright
clusters. We also find that the stellar mass in poor groups with temperatures
below 1 keV is comparable to the gas mass in these systems. Combining these
results with individual measurements for clusters, groups, and galaxies from
the literature, we find a break in the baryon fraction at ~1 keV. Above this
temperature, the baryon fraction scales with temperature as f_b \propto
T^0.20\pm0.03. We see significantly smaller baryon fractions below this
temperature, and the baryon fraction of poor groups joins smoothly onto that of
systems with still shallower potential wells such as normal and dwarf galaxies
where the baryon fraction scales with the inferred velocity dispersion as f_b
\propto \sigma^1.6. The small scatter in the baryon fraction at any given
potential well depth favors a universal baryon loss mechanism and a preheating
model for the baryon loss. The scatter is, however, larger for less massive
systems. Finally, we note that although the broken power-law relation can be
inferred from data points in the literature alone, the consistency between the
baryon fractions for poor groups and massive galaxies inspires us to fit the
two categories of objects (galaxies and clusters) with one relation.Comment: 21 pages, 5 figures, ApJ in pres
Constraining the Scatter in the Mass-Richness Relation of maxBCG Clusters With Weak Lensing and X-ray Data
We measure the logarithmic scatter in mass at fixed richness for clusters in
the maxBCG cluster catalog, an optically selected cluster sample drawn from
SDSS imaging data. Our measurement is achieved by demanding consistency between
available weak lensing and X-ray measurements of the maxBCG clusters, and the
X-ray luminosity--mass relation inferred from the 400d X-ray cluster survey, a
flux limited X-ray cluster survey. We find \sigma_{\ln
M|N_{200}}=0.45^{+0.20}_{-0.18} (95% CL) at N_{200} ~ 40, where N_{200} is the
number of red sequence galaxies in a cluster. As a byproduct of our analysis,
we also obtain a constraint on the correlation coefficient between \ln Lx and
\ln M at fixed richness, which is best expressed as a lower limit, r_{L,M|N} >=
0.85 (95% CL). This is the first observational constraint placed on a
correlation coefficient involving two different cluster mass tracers. We use
our results to produce a state of the art estimate of the halo mass function at
z=0.23 -- the median redshift of the maxBCG cluster sample -- and find that it
is consistent with the WMAP5 cosmology. Both the mass function data and its
covariance matrix are presented.Comment: 14 pages, 6 figures, submitted to Ap
Cosmological Constraints from the SDSS maxBCG Cluster Catalog
We use the abundance and weak lensing mass measurements of the SDSS maxBCG
cluster catalog to simultaneously constrain cosmology and the richness--mass
relation of the clusters. Assuming a flat \LambdaCDM cosmology, we find
\sigma_8(\Omega_m/0.25)^{0.41} = 0.832\pm 0.033 after marginalization over all
systematics. In common with previous studies, our error budget is dominated by
systematic uncertainties, the primary two being the absolute mass scale of the
weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of
the richness--mass relation. Our constraints are fully consistent with the WMAP
five-year data, and in a joint analysis we find \sigma_8=0.807\pm 0.020 and
\Omega_m=0.265\pm 0.016, an improvement of nearly a factor of two relative to
WMAP5 alone. Our results are also in excellent agreement with and comparable in
precision to the latest cosmological constraints from X-ray cluster abundances.
The remarkable consistency among these results demonstrates that cluster
abundance constraints are not only tight but also robust, and highlight the
power of optically-selected cluster samples to produce precision constraints on
cosmological parameters.Comment: comments welcom
A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering
Combining galaxy cluster data from the ROSAT All-Sky Survey and the Chandra
X-ray Observatory, cosmic microwave background data from the Wilkinson
Microwave Anisotropy Probe, and galaxy clustering data from the WiggleZ Dark
Energy Survey, the 6-degree Field Galaxy Survey and the Sloan Digital Sky
Survey III, we test for consistency the cosmic growth of structure predicted by
General Relativity (GR) and the cosmic expansion history predicted by the
cosmological constant plus cold dark matter paradigm (LCDM). The combination of
these three independent, well studied measurements of the evolution of the mean
energy density and its fluctuations is able to break strong degeneracies
between model parameters. We model the key properties of cosmic growth with the
normalization of the matter power spectrum, sigma_8, and the cosmic growth
index, gamma, and those of cosmic expansion with the mean matter density,
Omega_m, the Hubble constant, H_0, and a kinematical parameter equivalent to
that for the dark energy equation of state, w. For a spatially flat geometry,
w=-1, and allowing for systematic uncertainties, we obtain sigma_8=0.785+-0.019
and gamma=0.570+0.064-0.063 (at the 68.3 per cent confidence level). Allowing
both w and gamma to vary we find w=-0.950+0.069-0.070 and gamma=0.533+-0.080.
To further tighten the constraints on the expansion parameters, we also include
supernova, Cepheid variable and baryon acoustic oscillation data. For w=-1, we
have gamma=0.616+-0.061. For our most general model with a free w, we measure
Omega_m=0.278+0.012-0.011, H_0=70.0+-1.3 km s^-1 Mpc^-1 and
w=-0.987+0.054-0.053 for the expansion parameters, and sigma_8=0.789+-0.019 and
gamma=0.604+-0.078 for the growth parameters. These results are in excellent
agreement with GR+LCDM (gamma~0.55; w=-1) and represent the tightest and most
robust simultaneous constraint on cosmic growth and expansion to date.Comment: 14 pages, 5 figures, 1 table. Matches the accepted version for MNRAS.
New sections 3 and 6 added, containing 2 new figures. Table extended. The
results including BAO data have been slightly modified due to an updated BAO
analysis. Conclusions unchange
- …
