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ABSTRACT

We use the abundance and weak-lensing mass measurements of the Sloan Digital Sky Survey maxBCG cluster
catalog to simultaneously constrain cosmology and the richness–mass relation of the clusters. Assuming a flat
ΛCDM cosmology, we find σ8(Ωm/0.25)0.41 = 0.832 ± 0.033 after marginalization over all systematics. In
common with previous studies, our error budget is dominated by systematic uncertainties, the primary two
being the absolute mass scale of the weak-lensing masses of the maxBCG clusters, and uncertainty in the
scatter of the richness–mass relation. Our constraints are fully consistent with the WMAP five-year data, and
in a joint analysis we find σ8 = 0.807 ± 0.020 and Ωm = 0.265 ± 0.016, an improvement of nearly a
factor of 2 relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in
precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among
these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight
the power of optically selected cluster samples to produce precision constraints on cosmological parameters.
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1. INTRODUCTION

The abundance of galaxy clusters has long been recognized
as a powerful tool for constraining cosmological parameters.
More specifically, from theoretical considerations (e.g., Press
& Schechter 1974; Bond et al. 1991; White et al. 1993; Sheth
& Tormen 2002), one expects the abundance of massive ha-
los to be exponentially sensitive to the amplitude of matter
fluctuations. Though some theoretical challenges remain (see,
e.g., Robertson et al. 2009; Stanek et al. 2009), this basic the-
oretical prediction has been confirmed many times in detailed
numerical simulations, and a careful calibration of the abun-
dance of halos as a function of mass for various cosmologies
has been performed (see, e.g., Jenkins et al. 2001; Warren et al.
2006; Tinker et al. 2008). Despite these successes, realizing the
promise of cluster cosmology has proven difficult. Indeed, a re-
view of observational results from the past several years yields
a plethora of studies where typical uncertainties are estimated
at the Δσ8 ≈ 0.05–0.10 level despite a spread in central values
that range from σ8 ≈ 0.65 to σ8 ≈ 1.0 (Viana & Liddle 1996,
1999; Henry & Arnaud 1991; Henry 2000; Pierpaoli et al. 2001;
Borgani et al. 2001; Reiprich & Böhringer 2002; Seljak 2002;
Viana et al. 2002; Schuecker et al. 2003; Allen et al. 2003;
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Bahcall et al. 2003; Bahcall & Bode 2003; Henry 2004;
Voevodkin & Vikhlinin 2004; Rozo et al. 2007b; Gladders et al.
2007; Rines et al. 2007).

The discrepancies among the various studies mentioned
above are a manifestation of the fundamental problem con-
fronting cluster abundance studies: theoretical predictions tell
us how to compute the abundance of halos as a function of
mass, but halo masses are not observable. Consequently, we are
forced to rely on observable quantities, such as X-ray tempera-
ture, weak-lensing shear, or other such signals, to estimate clus-
ter masses. This reliance on observable mass tracers introduces
significant systematic uncertainties in the analysis; indeed, this
is typically the dominant source of error (e.g., Henry et al. 2009).

There are two primary ways in which these difficulties can
be addressed. One possibility is to reduce these systematic un-
certainties through detailed follow-up observations of relatively
few clusters, an approach exemplified in the work of Vikhlinin
et al. (2009a). The second possibility is to use large cluster
samples complemented with statistical properties of the clus-
ters that are sensitive to mass to simultaneously fit for cos-
mology and the observable–mass relation of the cluster sample
in question. Indeed, this is the basic idea behind the so-called
self-calibration approach, in which one uses the clustering of
clusters (Schuecker et al. 2003; Estrada et al. 2008) and cluster
abundance data to derive cosmological constraints with no a
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Table 1
Abundance of MaxBCG Clusters

Richness No. of Clusters

11–14 5167
14–18 2387
19–23 1504
24–29 765
30–38 533
39–48 230
49–61 134
62–78 59
79–120 31

priori knowledge of the observable–mass relation (Hu 2003;
Majumdar & Mohr 2004; Lima & Hu 2004, 2005). There
are, however, many other statistical observables that correlate
well with mass, such as the cluster–shear correlation function
(Sheldon et al. 2009), or even counts binned in multiple mass
tracers (Cunha 2009). By including such data, we can break
the degeneracy between cosmology and the observable–mass
relation, thereby obtaining tight cosmological constraints while
simultaneously fitting the observable–mass relation.

In this work, we derive cosmological constraints from the
Sloan Digital Sky Survey (SDSS) maxBCG cluster sample
(Koester et al. 2007a) and the statistical weak-lensing mass
measurement from Johnston et al. (2007). We then compare our
result to three state-of-the-art cluster abundance studies of X-ray
selected cluster samples (Mantz et al. 2008; Henry et al. 2009;
Vikhlinin et al. 2009b) and demonstrate that our results are both
consistent and competitive with these studies. This is the first
time an optically selected catalog with masses estimated in a
statistical way has produced constraints that are of comparable
accuracy to the more traditional approach.

The paper is organized as follows. Section 2 presents the data
used in our study. Section 3 describes our analysis, including
the likelihood model and priors adopted in this work, and the
way in which the analysis was implemented. Section 4 presents
our main results, while Sections 5.1, 5.2, and 5.3 discuss various
sources of systematic uncertainties. Section 6.1 compares our
results to the most recent results from X-ray selected cluster
samples. Section 6.2 investigates the implications of our results
for dark energy, and Section 6.3 discusses the prospects for
improving our cosmological constraints from the maxBCG
cluster sample in the future. Section 7 summarizes our main
results and conclusions. Unless otherwise stated, all masses in
this work are defined using an overdensity Δ = 200 relative to
the mean matter density of the universe.

2. DATA

2.1. MaxBCG Cluster Counts

The maxBCG cluster catalog (Koester et al. 2007a) is an op-
tically selected catalog drawn from 7398 deg2 of DR4+ imaging
data of the SDSS.16 The maxBCG algorithm exploits the tight
E/S0 ridgeline of galaxies in color–magnitude space to iden-
tify spatial overdensities of bright red galaxies. The tightness
of the color distribution of cluster galaxies greatly suppresses
the projection effects that have plagued optically selected clus-
ter catalogs, and also allows for accurate photometric redshift
estimates of the clusters (Δz ≈ 0.01). MaxBCG clusters are

16 We write DR4+ as the catalog, used a few hundred degrees of imaging
beyond those released with DR4.

Figure 1. Observed (diamonds) and modeled (solid line) cluster counts as a
function of richness in our best-fit model described in Section 4. The model
counts are computed using the best-fit model detailed in Section 4, and are a
good fit to the data.

selected such that their photometric redshift estimates are in the
range zphoto ∈ [0.1, 0.3], resulting in a nearly volume-limited
catalog. A detailed discussion of the maxBCG cluster finding
algorithm can be found in Koester et al. (2007b).

We bin the maxBCG cluster sample in nine richness bins
spanning the range N200 ∈ [11, 120], corresponding roughly
to M ∈ [7 × 1013 h−1 M�, 1.2 × 1015 h−1 M�]. Our richness
measure N200 is defined as the number of red-sequence galaxies
within a scaled radius such that the average galaxy overdensity
interior to that radius is 200 times the mean galaxy density
of the universe (see Koester et al. 2007a, for further details).
The richness bins, and the number of clusters in each bin, are
presented in Table 1. There are an additional five clusters with
richness N200 > 120. These five clusters have N200 = 126, 139,
156, 164, and 188, and are properly included in the analysis on
an individual basis (see Section 3.1 for details).

Figure 1 shows the cluster counts corresponding to Table 1.
Error bars between the various points are correlated. Also shown
are the modeled counts from our best-fit model, detailed in
Section 4. We show these model counts here for comparison
purposes.

2.2. MaxBCG Weak-lensing Masses

Estimates of the mean mass of the maxBCG clusters as
a function of richness are obtained through the weak-lensing
analysis described by Sheldon et al. (2009) and Johnston et al.
(2007). Briefly, Sheldon et al. (2009) binned the maxBCG
cluster sample in richness bins as summarized in Table 2.
Given a cluster in a specified richness bin, they use all cluster–
galaxy pairs with the selected cluster as a lens to estimate
the density contrast profile ΔΣ of the cluster. While these
individual cluster profiles have very low signal-to-noise ratio
(S/N), averaging over all clusters within a richness bin allows
one to obtain accurate estimates for the mean density contrast
profile of maxBCG clusters as a function of richness. The
resulting profiles are fit using a halo model formalism to derive
mean cluster masses by Johnston et al. (2007). We then correct
these masses upward by a factor of 1.18 due to the expected
photometric redshift bias due to the dilution of the lensing
signal from galaxies that are in front of the cluster lenses, but
whose photometric redshift probability distribution extends past
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Figure 2. Mean weak-lensing mass of maxBCG clusters as a function of
richness. The diamonds with error bars correspond to our data, while the solid
line shows the values predicted from our best-fit model (see Section 4 for
details). We note the error bars are correlated, and the model is a good fit to the
data.

Table 2
Mean Mass of MaxBCG Clusters

Richness No. of Clusters 〈M200b〉 [1014 M�]

12–17 5651 1.298
18–25 2269 1.983
26–40 1021 3.846
41–70 353 5.475
71+ 55 13.03

Notes. Masses listed here are based on those quoted in Johnston et al. (2007),
rescaled by the expected photometric redshift bias described in the text, and
extrapolated to a matter overdensity Δ = 200 from the Δ = 180 value quoted
in Johnston et al. (2007). The masses have also been rescaled to the cosmology
that maximizes our likelihood function, (σ8 = 0.80, Ωm = 0.28).

the cluster lens (see Mandelbaum et al. 2008b, for details). A
very similar but independent analysis has also been carried out
by Mandelbaum et al. (2008a), and we use the comparison
between the two independent analyses to set the systematic
error uncertainty of the weak-lensing mass estimates (Rozo
et al. 2009). The final results of the weak-lensing analysis
summarized above are presented here in Table 2.17 Figure 2
shows the mean weak-lensing masses from Table 2. Also shown
are the mean masses computed using the best-fit model detailed
in Section 4. The richness binning of the weak-lensing mass
estimates differs from that of the abundance data because of the
larger number of clusters necessary within each richness bin to
obtain high S/N weak-lensing measurements.

3. ANALYSIS

We employ a Bayesian approach for deriving cosmological
constraints from the maxBCG cluster sample. We use only
minimal priors placed on the parameters governing the richness–
mass relation, relying instead on the cluster abundance and
weak-lensing data to simultaneously constrain cosmology and
the richness–mass relation of the clusters. Details of the model,
parameter priors, and implementation can be found below.

17 The number of clusters in Table 2 is larger than that reported in Johnston
et al. (2007) due to masking in the weak-lensing measurements. This
additional masking does not bias the recovered masses in any way.

3.1. Likelihood Model

The observable vector x for our experiment is comprised of
the following:

1. N1 through N9: the number of clusters in each of the nine
richness bins defined in Table 1.

2. (NM̄)1 through (NM̄)5, the total mass contained in clusters
in each of the five richness bins defined in Table 2, computed
assuming Ωm = 0.27 and h = 0.71.18

We adopt a Gaussian likelihood model, which is fully speci-
fied by the mean and covariance matrix of our observables. Ex-
pressions for these quantities as a function of model parameters
are specified below. We also multiply this Gaussian likelihood
by a term that allows us to properly include the information
contained in clusters with richness N200 > 120. In this richness
range, clusters are very rare and a Gaussian likelihood model
is not justified. Instead, we adopt a likelihood model where the
probability of having a cluster of a particular richness N200 is
binary (i.e., a Bernoulli distribution), with

P (N |N200) =
{

1 − p, if N = 0
p, if N = 1.

(1)

Such a probability distribution is adequate so long as the
probability of having two clusters of a given richness is
infinitesimally small. Note that given this binary probability
distribution, we have that the expectation value of the number
of such clusters is simply 〈N (N200)〉 = p, and the likelihood
is fully specified by the expectation value of our observable.
We find that the likelihood of observing the particular richness
distribution found for the maxBCG catalog for clusters of
richness N200 � 120 is

Ltail =
∏

N(N200)=0

(1 − 〈N (N200)〉)
∏

N(N200)=1

〈N (N200)〉 . (2)

The first product is over all richness N200 > 120 and no
clusters in them, and the second product is over richness bins
which contain one cluster. The subscript tail reflects the fact that
it is the likelihood of the tail of the abundance function. The final
likelihood L = LGLtail is the product of the Gaussian likelihood
LG described earlier and the likelihood of the abundance
function tail. We note that the log-likelihood of the tail simplifies
to

lnLtail =
∑

N200>120

〈N (N200)〉

−
∑

N(N200)=1

〈N (N200)〉 + ln 〈N (N200)〉 . (3)

An identical result is obtained assuming only Poisson variations
in the number of clusters for N200 > 120.

3.2. Expectation Values

To fully specify our likelihood model, we need to derive
expressions for the mean and variance of our observables. The
model adopted in this work is very similar in spirit to that of
Rozo et al. (2007b), so we present here only a brief overview of

18 While Table 2 reports the masses after corrections, assuming Ωm = 0.28,
the actual input to our statistical analysis are the uncorrected masses from
Johnston et al. (2007), which assume Ωm = 0.27.
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the formalism. Interested readers can find a detailed discussion
in Rozo et al. (2007b).

We begin by considering the expected mean number of
clusters in our sample. The number of halos within a redshift
bin z ∈ [zmin, zmax] and within a mass range [Mmin,Mmax] is
given by

N =
∫

dM dz
dn

dM

dV

dz
ψ(M)φ(z), (4)

where dn/dM is the halo mass function, dV/dz is the comoving
volume per unit redshift, and ψ(M) and φ(z) are the mass and
redshift binning functions, i.e., ψ(M) = 1 if M is within the
mass bin of interest and zero otherwise, and φ(z) = 1 if z is
within the redshift bin of interest, but is zero otherwise.

In practice, we observe neither a cluster’s mass nor its true
redshift, but are forced to rely on the cluster richness N200 as a
mass tracer and to employ a photometric redshift estimate. Let
then P (N200|M) denote the probability that a cluster of mass M
has a richness N200, and let P (zphoto|z) denote the probability
that a cluster at redshift z is assigned a photometric redshift
zphoto. The binning function ψ is now a function of richness
rather than mass so ψ(N200) = 1 for N200 ∈ [Nmin

200 , Nmax
200 ].

Likewise, the redshift binning function is now a function of
photometric redshift zphoto. The total number of clusters in the
maxBCG catalog becomes

〈N〉 =
∫

dM dz
dn

dM

dV

dz
〈ψ |M〉 〈φ|z〉 , (5)

where

〈ψ |M〉 =
∫

dN200 P (N200|M)ψ(N200), (6)

〈φ|z〉 =
∫

dzphoto P (zphoto|z)φ(zphoto). (7)

The quantity 〈ψ |M〉 represents the probability that a halo of
mass M falls within the richness bin defined by ψ . We show
these probabilities as a function of mass for each of the nine
richness bins considered here in Figure 3. To make the figure,
we have set all relevant model parameters to their best-fit value
detailed in Section 4.

A similar argument allows us to write an expression for the
expectation value for the total mass contained in clusters of a
specified richness and redshift bin. This is given by

〈
NM̄

〉 =
∫

dMdz
dn

dM

dV

dz
M 〈ψ |M〉 〈φ|z〉 . (8)

The notation NM̄ reflects the fact that if M̄ is the mean mass of
the clusters of interest, the total mass contained in such clusters
is NM̄ where N is the total number of clusters in said bin.

So far, our formulae adequately describe our experiment
provided the weak-lensing masses estimated by Johnston et al.
(2007) are fair estimates of the mean mass of the maxBCG
clusters. In practice, there is an important systematic that needs
to be properly incorporated in our analysis, and which slightly
modifies our expression. We are referring to uncertainties in the
photometric redshift estimates of the source galaxies employed
in the weak-lensing analysis. The main problem here is that
the mean surface mass density profile Σ(R) recovered by the
weak-lensing analysis is proportional to 1/

〈
Σ−1

c

〉
, the average

inverse critical surface density of all lens–source pairs employed

Figure 3. Mass selection function of the maxBCG algorithm. The nine solid
curves represent the probability that a halo of the corresponding mass falls
within each of the nine richness bins described in Table 1. The dashed line is the
sum of all the binning functions, and is the probability that a halo of a given mass
is assigned a richness N200 ∈ [11, 120], i.e., it is the mass selection function of
the maxBCG algorithm over this richness range. These binning functions are all
estimated using our best-fit model parameters, which are detailed in Section 4.

in the analysis. We introduce an additional weak-lensing bias
parameter β such that if M̄true is the true mean mass of a set
of clusters, the weak-lensing mass estimate M̄obs is given by
M̄obs = βM̄true. Consequently, our final expression for the mean
weak-lensing masses of the maxBCG clusters is

〈
NM̄

〉 = β

∫
dMdz

dn

dM

dV

dz
M 〈ψ |M〉 〈φ|z〉 . (9)

Priors on the parameter β are discussed in Section 3.4.

3.3. Covariance Matrix

There are multiple sources of statistical uncertainty in the
data. These include (1) Poisson fluctuations in the number of
halos of a given mass, (2) variance in the mean overdensity of the
survey volume, and (3) fluctuations in the number of clusters at
fixed richness due to stochasticity of the richness–mass relation.
The covariance matrix of the observables is defined by the
sum of the covariance matrices induced by each of the three
sources of statistical fluctuation just mentioned. A detailed
derivation of the relevant formulae is presented in Rozo et al.
(2007a). Since this derivation generalizes trivially to include
the mean mass as an additional observable—one needs only to
introduce a mass weight in the formulae as appropriate—we
will not repeat ourselves here.

There is, however, one additional source of statistical uncer-
tainty that is not included in these calculation, namely mea-
surement error in the weak-lensing masses. More specifically,
uncertainties in the recovered weak-lensing masses are dom-
inated by shape noise in the source galaxies. This error was
estimated by Sheldon et al. (2009) using jackknife resampling,
and was properly propagated into the computation of the weak-
lensing mass estimates by Johnston et al. (2007). This error is
added in quadrature to the diagonal elements of the covariance
matrix corresponding to the mean mass measurements.

Finally, in addition to the errors summarized above, the co-
variance matrix is further modified due to systematic uncertain-
ties in the purity and completeness of the sample. The basic
setup is this: if Ntrue(N200) is the number of clusters one ex-
pects in the absence of systematics, and Nobs(N200) is the actual
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observed number of clusters, one has

Nobs(N200) = λ(N200)Ntrue(N200), (10)

where λ is a factor close to unity that characterizes the purity and
completeness systematics. If the sample is pure but incomplete,
λ is simply equal to the sample’s completeness. For a complete
but impure sample, λ is one over the sample’s purity. Note that,
in general, λ is itself a function of the cluster richness N200. In
Rozo et al. (2007b), we estimated the purity and completeness
of the maxBCG cluster sample at 95% or higher for N200 � 11
(see Figures 3 and 6 in that paper), suggesting λ = 1.00 ± 0.05.
Given that

Var(Nobs) = Var(λ)N2
true + λ2Var(Ntrue), (11)

it follows that we can incorporate the impact of this nuisance
parameter by simply adding in quadrature the relative uncer-
tainty introduced by λ to the covariance matrix estimated in the
previous section. A similar argument holds for the total mass
contained in clusters within each richness bin. That is, if M̄true
is the true mean mass of clusters of richness N200, and M̄obs is
the observed mean mass, we expect

(NM̄)obs = λ̃(NM̄)true, (12)

where λ̃ is a correction factor that accounts for the mass
contribution of impurities in the sample. Unfortunately, it is
impossible to know a priori what this factor λ̃ should be, even
if we knew the correction factor λ for cluster abundances. The
reason is that false cluster detections will most certainly have a
mass overdensity associated with them, just not that of a halo
of the expected mass given the observed richness. Without a
priori knowledge of this mass contribution, it is impossible to
estimate the proper value of λ̃. In the extreme case that all
false detections have mass M̄ , then the recovered value for NM̄
will be biased by a factor λ̃ = λ, which suggests adopting a
fiducial value Var(λ̃) = 0.052 to add to the diagonal matrix
elements corresponding to the observed weak-lensing masses.
That is the approach we follow here. Throughout, we always set
Var(λ̃) = Var(λ).

3.4. Model Parameters and Priors

Our analysis assumes a neutrino-less, flat ΛCDM cosmology,
and we fit for the values of σ8 and Ωm. The Hubble parameter
is held fixed at h = 0.7, and the tilt of the primordial power
spectrum is set to n = 0.96 as per the latest WMAP results
(Dunkley et al. 2009). The baryon density Ωbh

2 is also held
fixed at its WMAP5 value Ωbh

2 = 0.02273. Of these secondary
parameters, the two that are most important are the Hubble
constant and tilt of the primordial matter power spectrum (Rozo
et al. 2004). Section 5.2.1 demonstrates our results are robust to
marginalization over these additional parameters.

The richness–mass relation P (N200|M) is assumed to be
a lognormal of constant scatter. The mean log-richness at a
given mass 〈ln N200|M〉 is assumed to vary linearly with mass,
resulting in two free parameters. We comment on possible de-
viations from linearity in Section 5.3.1. For the two parame-
ters specifying the mean richness–mass relation, we have cho-
sen the value of 〈ln N200|M〉 at M = 1.3 × 1014 M� and at
M = 1.3 × 1015 M�. These two are very nearly the values of
the mean mass for our lowest and highest richness bins, and
therefore roughly bracket the range of masses probed in our

analysis. The value of 〈ln N200|M〉 at any other mass is com-
puted through linear interpolation. We adopt flat priors on both
of these parameters.

The scatter in the richness–mass relation σN200|M is defined
as the standard deviation of ln N200 at fixed M, σ 2

N200|M =
Var(ln N200|M). We assume that this quantity is a constant
that does not scale with mass, and adopt a flat prior σN200|M ∈
[0.1, 1.5] for this parameter. We comment on possible deviations
from constant scatter in Section 5.3.2. The minimum scatter
allowed in our work (σN200|M = 0.1) corresponds to a 10%
scatter, which is the predicted scatter for YX in simulations. YX
is usually regarded as the X-ray mass tracer that is most tightly
correlated with mass, so our prior on the scatter is simply the
statement that richness estimates are less faithful mass tracers
than YX .

We also place a prior on the converse scatter, that is, the
scatter in mass at fixed richness σ 2

M|N200
= Var(ln M|N200) at

N200 = 40. We emphasize that in our analysis the scatter σM|N200

is considered an observable, not a parameter (the parameters is
σN200|M ). The probability distribution P (σM|N200 ) is taken directly
from the analysis by Rozo et al. (2009), and can be roughly
summarized as σM|N200 = 0.45 ± 0.10 (1σ ). This constraint is
derived by demanding consistency between the observed LX–
N200 relation of maxBCG clusters, the mass–richness relation
of maxBCG clusters derived from weak lensing, and the LX–M
relation of clusters measured in the 400 day survey (Vikhlinin
et al. 2009b). To compute the observed scatter σM|N200 as a
function of our model parameters, we directly compute the
variance in log-mass for clusters in a richness bin N200 ∈
[38, 42]. The variance in ln M due to the finite width of the
bin is of order (1/40)2 ≈ 0.006, which is to be compared to the
intrinsic variance ≈0.452 ≈ 0.2. Because the intrinsic variance
is significantly larger than the variance due to using a finite bin
width, our results are not sensitive to the width of the bin used
in the implementation of the prior. We have explicitly checked
that this is indeed the case. We have also checked that our
results are insensitive to the location of the richness bin. That
is, placing our prior on σM|N200 at N200 = 30 and N200 = 50
gives results that are nearly identical to those obtained with
our fiducial N200 = 40 value. Finally, we note that in using
the scatter measurement of Rozo et al. (2009), who used an
overdensity threshold of 500 relative to critical to define cluster
masses, we are making the implicit assumption that the value
of the current uncertainties in the scatter are much larger than
any sensitivity to differences in the cluster mass definition. To
address this concern, in Section 5.2.2, we discuss how the scatter
prior impacts our results.

The redshift selection function P (zphoto|z) is assumed to be
Gaussian with 〈zphoto|z〉 = z and σ (zphoto|z) = 0.008, as per the
discussion in Koester et al. (2007a). We have explicitly checked
that our results are not sensitive to our choice of parameters
within the range δ〈zphoto|z〉 ≈ 0.005 and δσzphoto|z = 0.02,
which encompass the uncertainties in the photometric redshift
distribution of the maxBCG clusters (Koester et al. 2007a).

We also adopt a prior on the weak-lensing mass bias pa-
rameter, β = 1.0 ± 0.06, and allow it to vary over the range
[0.5, 1.5]. The width of our Gaussian prior is simply the mean
difference between the Johnston et al. (2007) masses (after cor-
recting for photometric redshift bias) and those of Mandelbaum
et al. (2008a; for a more detailed discussion, see Rozo et al.
2009).

Finally, we also comment an implicit assumption that was
made in our model, namely that the evolution of the mass–
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Table 3
Parameter Priors for our Fiducial Cosmological Analysis

Parametera Priorb Importancec

σ8 [0.4, 1.2] Unrestrictive
Ωm [0.05, 0.95] Unrestrictive
〈ln N200|M1〉 Flat Unrestrictive
〈ln N200|M2〉 Flat Unrestrictive
σN200|M [0.1, 1.5] Unrestrictive
β 1.00 ± 0.06; [0.5, 1.5] Restrictive

σ d
M|N200

Rozo et al. (2009) Restrictive

Notes.
a The masses M1 and M2 are set to 1.3 × 1014 M� and 1.3 × 1015 M�,
respectively.
b Priors of the form [a, b] mean the parameter in question is restricted to values
within that range (flat prior). Priors of the form x = a ± δa refer to a Gaussian
prior of mean 〈x〉 = a and variance Var(x) = (δa)2.
c Column specifies whether our results are sensitive to the assumed priors. We
refer to a prior as restrictive if our cosmological constraints are sensitive to the
assumed prior, and unrestrictive otherwise. The only restrictive priors are that on
the mass bias parameter β and the prior on the scatter in mass at fixed richness.
d Note σM|N200 is not really a parameter in our analysis but an observable that
can be computed given the six parameters above.

richness relation over the redshift range under consideration is
negligible. To see why this is so, first note that evolution of
the mass–richness relation can be thought of as scatter in the
mass–richness relation that is correlated with cluster redshift.
As long as this scatter is negligible compared to the intrinsic
scatter, this evolution will be negligible. In Rykoff et al. (2008),
we measured the evolution in the LX–N200 relation. Using the
evolution of the LX–M relation measurement from Vikhlinin
et al. (2009a), we can estimate the evolution in the mass–
richness relation, and the corresponding scatter. The expected
logarithmic scatter over the redshift range [0.1, 0.3] is found to
be ≈8%, which is much lower than the observed scatter in the
mass–richness relation, and is therefore negligible.

The total number of parameters that are allowed to vary
in our Monte Carlo Markov Chain (MCMC) is six: σ8, Ωm,
〈ln N200|M〉 evaluated at M = 1.3 × 1014 M� and M =
1.3×1015 M�, σN200|M , and β. We summarize the relevant priors
in Table 3.

3.5. Implementation

We use the low baryon transfer functions of Eisenstein &
Hu (1999) to estimate the linear matter power spectrum. The
halo mass function is computed using Tinker et al. (2008). We
use a mass definition corresponding to a 200 overdensity with
respect to the mean matter density of the universe, and adopt
the Sheth–Tormen expressions for the mass dependence of halo
bias (Sheth & Tormen 2002; this enters into our analysis only
in the calculation of sample variance). The likelihood function
is sampled using a MCMC approach with a burn in of 22,000
points during which the covariance matrix of the parameters
is continually updated so as to provide an ideal sampling rate
(Dunkley et al. 2005). We then run the chains for 105 points,
and use the resulting outputs to estimate the 68% and 95%
likelihood contours in parameter space. For further details, we
refer the reader to Rozo et al. (2007a).

The one point that is worth discussing here is our corrections
for the dependence of the recovered weak-lensing masses on
the assumptions about cosmology used for the measurements.
Johnston et al. (2007) quote halo masses at an overdensity of 180

relative to the mean background of the universe. Given that we
use a density contrast of 200 relative to mean in order to compute
the halo mass function, we must rescale the observed masses
to our adopted mass definition. Moreover, the weak-lensing
analysis assumed Ωm = 0.27. Given a different matter density
parameter Ω̃m, the quoted mass will no longer correspond to
an overdensity of 180, but to an overdensity of 180(0.27/Ω̃m).
We explicitly apply this rescaling to the observed weak-lensing
masses at each point in our MCMC. In practice, there is also
an additional correction due to the dependence of the lensing
critical surface density Σc on the matter density parameter Ωm,
as well as small corrections due to systematic variations in
halo concentration with mass. However, these corrections are
expected to be small, and are fully degenerate with the mass
bias parameter β, so we do not include them here. The rescaling
of the weak-lensing masses is done using the fitting formulae in
Hu & Kravtsov (2003).

4. RESULTS

Figure 4 presents the 68% and 95% confidence regions for
each pair of parameters in our fiducial analysis described in
Section 3. Plots along the diagonal show the probability distri-
butions of each quantity marginalized over the remaining pa-
rameters. Upper left plot showing the probability distribution of
the mass parameter β also shows the prior β = 1.00 ± 0.06 as a
dashed curve. Our best-fit model is summarized in Table 4, and
is defined as the expectation value of all of our parameters. To
test that our best-fit model is a good model to the data, we per-
formed 104 Monte Carlo realizations of our best-fit model, and
evaluated the likelihood function for each of these realizations.
Setting 〈lnL〉 = 0, from our Monte Carlo realizations we find
lnL = 0.0 ± 6.9, which is to be compared to the data likelihood
lnL = −5.2. The data likelihood is therefore consistent with
our model, demonstrating the model is statistically a good fit.

In the discussion that follows, we restrict ourselves to the
subset of plots which we find most interesting. Throughout,
unless otherwise noted we summarize constraints on a parameter
p by writing p = p̄ + σp where p̄ and σp are the mean
and standard deviation of the likelihood distribution for p
marginalized over all other parameters. We use this convention
even when the likelihood function is obviously not Gaussian.

4.1. Cosmological Constraints and Comparison to WMAP

The solid curves in Figure 5 show the 68% and 95%
confidence regions from our analysis. The “thin” axis of
our error ellipse corresponds to σ8(Ωm/0.25)0.41 = 0.832 ±
0.033.19 The constraints on each of the individual parameters
are σ8 = 0.80 ± 0.07 and Ωm = 0.28 ± 0.07. The marginal-
ized likelihood can be reasonably approximated by a lognor-
mal distribution with ln Ωm = −1.313 ± 0.183, 〈ln σ8〉 =
−0.219 ± 0.081, and a correlation coefficient between ln Ωm

and ln σ8 r = −0.899. Also shown in Figure 5 as dashed
curves are the corresponding regions from the WMAP five-
year results (Dunkley et al. 2009). Our results are consis-
tent with WMAP5. Combining the two experiments results in
the inner filled ellipses,20 given by σ8 = 0.807 ± 0.020 and

19 The exponent 0.41 is obtained by estimating the covariance matrix of ln σ8
and ln Ωm, and finding the best constrained eigenvector.
20 For our combined analysis, we uses a Kernel Density Estimator (KDE) to
estimate the likelihood functions from our and the WMAP5 MCMCs. We then
multiplied the likelihoods to obtain the likelihood function from which our
joint constraints are derived.
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Figure 4. Confidence regions for each pair of parameters that were allowed to vary in our fiducial analysis (described in Section 3). Contours show 68% and
95% confidence regions. Plots along the diagonal show the probability distributions for each quantity marginalized over the remaining parameters. The probability
distribution for the mass bias parameter β also shows the prior β = 1.00 ± 0.06 assumed in the analysis.

Table 4
Best-fit Model

Parametera MaxBCG MaxBCG+WMAP5b

σ8 0.804 ± 0.073 0.807 ± 0.020
Ωm 0.281 ± 0.066 0.269 ± 0.018
〈ln N200|M1〉 2.47 ± 0.10 2.48 ± 0.10
〈ln N200|M2〉 4.21 ± 0.19 4.21 ± 0.13
σN200|M 0.357 ± 0.073 0.348 ± 0.071
β 1.016 ± 0.060 1.013 ± 0.059

Notes.
a The masses M1 and M2 are set to 1.3 × 1014 M� and 1.3 × 1015 M�,
respectively.
b These values are obtained by including the WAMP5 prior
σ8(Ωm/0.25)−0.312 = 0.790 ± 0.024. See Section 4.3 for details.

Ωm = 0.265 ± 0.016, with nearly no covariance between the
two parameters (r = 0.008). These joint constraints on σ8 and
Ωm represent nearly a factor of 2 improvement relative to the
constraints from WMAP alone.

The shape of the confidence region is easy to interpret:
since the number of massive clusters increases with both σ8
and Ωm, in order to hold the cluster abundance fixed at its

Figure 5. Constraints on the σ8–Ωm plane from maxBCG and WMAP5 for a
flat ΛCDM cosmology. Contours show the 68% and 95% confidence regions for
maxBCG (solid), WMAP5 (dashed), and the combined results (filled ellipses).
The thin axis of the maxBCG-only ellipse corresponds to σ8(Ωm/0.25)0.41 =
0.832 ± 0.033. The joint constraints are σ8 = 0.807 ± 0.020 and Ωm =
0.265 ± 0.016 (1σ errors).
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Figure 6. Halo mass function for two different cosmologies satisfying the
maxBCG constraint σ8(Ωm/0.25)0.41 = 0.832. The mass functions are weighted
by the volume probed by the maxBCG catalog (computed assuming Ωm =
0.265), and by the mass selection function shown in Figure 3. The maxBCG
normalization condition σ8(Ωm/0.25)0.41 = 0.832 results in a fixed halo
abundance at a mass scale M = 3.6 × 1014 M�. The dotted line at the top
marks the mass scale at which the mean of the richness–mass relation is best
constrained in our fiducial analysis.

observed value any increase in σ8 must be compensated by
a decrease in Ωm, implying that a product of the form σ8Ωγ

m

must be held fixed. The specific value of γ depends on the
mass scale that is best constrained from the data. The particular
degeneracy recovered by our analysis corresponds to a mass
scale M = 3.6 × 1014 M�, which is about what we would
expect (i.e., roughly half way between the lowest and highest
masses probed by our data). Figure 6 illustrates this argument
by showing the Tinker et al. (2008) halo mass function weighted
by the mass selection function from Figure 3 for two different
cosmologies: a low σ8 (high Ωm) cosmology, and a high σ8 (low
Ωm) cosmology, where the product σ8Ω0.41

m has been held fixed
to our best-fit value. We will refer back to Figure 6 multiple
times in the following discussion.

4.2. Constraints on the Richness–Mass Relation

In our analysis, we parameterized the richness–mass relation
in terms of its scatter, and the value of the mean 〈ln N200|M〉 at
two mass scales, M1 = 1.3×1014 M� and M2 = 1.3×1015 M�.
We now re-parameterize this relation in terms of an amplitude
and slope for 〈ln N200|M〉, selecting as the pivot point the mass
scale at which the uncertainty in 〈ln N200|M〉 is minimized. We
write then

〈ln N200|M〉 = A + α(ln M − ln Mpivot). (13)

We find the error on the amplitude parameter is minimized
for Mpivot = 1.09 × 1014, which agrees well with the peak
in the mass distribution of our clusters as shown in Figure 6.
In what follows, we discuss only constraints on the richness–
mass relation assuming this parameterization. A discussion of
possible curvature in the richness–mass relation and/or mass
scaling of its scatter is relegated to Section 5.3.

Figure 7 summarizes our constraints on the richness–mass
relation after marginalizing over all other parameters. The best-
fit values for each of the parameters are A = 2.34 ± 0.10,
α = 0.757 ± 0.066, and σN200|M = 0.357 ± 0.073. Note
that for a pure power-law abundance function, one expects
σN200|M = ασM|N200 , in accordance with our result.

Figure 7. Constraints on parameters of the richness–mass relation. Contours
indicate the 68% and 95% confidence regions; diagonal histograms indicate
the probability distribution for each parameter, marginalized over the remaining
parameters. The amplitude and slope parameters define the mean of the richness–
mass relation as per Equation (13). The pivot point of the relation occurs at
M = 1.15 × 1014 M�.

We emphasize here that interpreting these results in terms
of standard halo occupation model parameters requires care.
Richness estimates are made using radial apertures that are
not defined by mass overdensities, and are affected by cluster
miscentering, photometric redshift errors, and projection effects
(see, e.g., Cohn et al. 2007). Consequently, one should not
simply adopt the parameters obtained here as constraints on
the halo occupation distribution of red-sequence galaxies in
massive halos.

Nevertheless, we find two of our above results worth of note.
First, it is clear that the naive scaling N200 ∝ M is not satisfied,
with the slope of the richness–mass relation being significantly
smaller than unity. This is not terribly surprising, however.
While the slope of the population of dark matter substructures
in halos is expected to have a slope very close to unity, galaxy
bias will certainly change this naive expectation. This bias will
only be exacerbated due to color cuts employed in the richness
definition, and the slope of the richness–mass relation will be
further affected by the fact that we cannot count galaxies within
a mass overdensity defined radius when we estimate richness.
Thus, even in the absence of systematics, the expectation α ≈ 1
is at best a rough one. Given that richness estimates are subject
to additional sources of systematic uncertainty, we believe the
recovered value α = 0.757 ± 0.066 is perfectly reasonable.

Second, the recovered scatter σN200|M = 0.357 ± 0.073 is
larger than the Poisson value σN200|M ≈ 0.2 that one might
naively expect for clusters with N200 ≈ 30 galaxies, which is
the typical richness of clusters at the mass scale where mass
function is best constrained. At present, we do not know what
is the primary driver of this scatter: it could be that the scatter
is intrinsic, or it could be driven primarily due to systematic
uncertainties affecting richness estimates such as miscentering
or photometric redshift estimates. Adequately resolving this
question will be of paramount importance before we can draw
any inferences on how galaxies populate dark matter halos.
Given our intended goal of deriving cosmological constraints,
we have opted for deferring such a detailed study of the scatter
in the richness–mass relation to future work. At this time, the
question of why the scatter in the richness–mass is so large
remains a puzzle.
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Figure 8. Confidence regions in the σ8–α plane. Solid ellipses show the
68% and 95% likelihood regions. The tight correlation between σ8 and α,
the slope of the richness–mass relation, can be understood on the basis of
Figure 6: a low σ8 implies few massive halos, so to avoid under-predicting the
abundance of rich clusters, galaxies must preferentially live in lower mass halos,
resulting in a more rapidly rising richness–mass relation (i.e., higher slope).
This degeneracy is broken upon inclusion of the WMAP five-year constraint
σ8(Ωm/0.25)−0.312 = 0.790 ± 0.024 as an additional prior, as illustrated by
the inner dashed ellipses in the figure. The corresponding constraint on the
slope of the richness–mass relation is α = 0.752 ± 0.024.

Figure 7 also shows that the amplitude of the richness–
mass relation is anti-correlated with the scatter. This is not
surprising: at fixed cluster abundance, and given a fixed mass
function, models with a high amplitude of the richness–mass
relation result in halos that tend to be very rich. This means
that the number of lower mass halos that scatter into higher
richness must be low, or otherwise the abundance of clusters
will be over-predicted. Consequently, high-amplitude models
must have low scatter, leading to an anti-correlation between
the two parameters.

4.3. Degeneracies Between Cosmology and the Richness–Mass
Relation

Figure 4 shows that the most significant correlation between
cosmology and our fiducial richness–mass relation parameters
is that between σ8 and 〈ln N200|M2〉 where M2 is our higher
reference mass M2 = 1.3 × 1015 M�. Because the pivot point
for the mean of the richness–mass relation is so close to our
original low-mass reference scale M1 = 1.3 × 1014 M� used to
define 〈ln N200|M〉, it follows that M2 must be closely related
to α, the slope of the richness–mass relation. We thus expect a
strong degeneracy between σ8 and α (see also Rozo et al. 2004).

Figure 8 shows that this is indeed the case. We can understand
the origin of this anti-correlation by investigating Figure 6. We
have seen that the data fixes the amplitude of the halo abundance
at M = 3.6 × 1014 M�. At the high mass end, however, the
expected abundance of massive halos varies rapidly with σ8.
Low σ8 models result in fewer massive halos, so high richness
clusters will have relatively lower masses. That is, richness must
increase steeply with mass, and hence α must be high, explaining
the anti-correlation between σ8 and α.

Figure 8 also demonstrates how these constraints are
improved when we include a WMAP five-year data prior
σ8(Ωm/0.25)−0.312 = 0.790 ± 0.024. This prior corresponds
to the error along the thin direction of the WMAP error ellipse.
Since WMAP data breaks the σ8–Ωm degeneracy in the data,

Figure 9. Effect of purity, completeness, and mass bias on parameter constraints.
Plot shows 68% confidence regions assuming perfect purity and completeness
(dashed), increasing the width of the weak-lensing mass bias prior from
β = 1.00 ± 0.05 to β = 1.00 ± 0.12 (dotted), and for our fiducial analysis
(solid). We find the uncertainty in purity and completeness has a minimal impact
on the best constrained combination of the σ8 and Ωm parameter, and therefore
on the constraints from a joint maxBCG+WMAP5 analysis. The same is not
true of the weak-lensing mass bias parameter. Uncertainties in the maxBCG
cluster masses are the dominant source of systematic in our current analysis,
and increase the uncertainty of the parameter combination σ8(Ωm/0.25)0.4 by
45% (see Figures 10 and 11 for comparison).

including the WMAP prior produces a tight constraint in the
σ8–α plane. The new marginalized uncertainty in the slope of
the richness–mass relation is α = 0.752 ± 0.024, significantly
smaller than unity.

5. SYSTEMATIC ERRORS

We now consider the impact of three varieties of systematic
errors on our analysis. Section 5.1 investigates observational
systematics; Section 5.2 investigates systematics due to our
assumed priors; and Section 5.3 investigates systematics due
to the parameterization of the richness–mass relation.

5.1. Observational Systematics

In this section, we study how observational systematics affect
the recovered cosmological constraints from our analysis. We
consider two such systematics: one, the impact of purity and
completeness, and two, the impact of possible biases in the
weak-lensing mass estimates of the maxBCG clusters. We do
not discuss uncertainties in the photometric redshifts for clusters
at any length since, as discussed in Section 3.4, they are found to
be negligible. This is not surprising, as the maxBCG photometric
redshift estimates are extremely accurate (σz ≈ 0.008; Koester
et al. 2007a).

5.1.1. The Impact of Purity and Completeness

Figure 9 compares the cosmological constraints obtained
assuming perfect purity and completeness with those obtained
assuming a 5% uncertainty in these quantities. While non-
negligible, the 5% uncertainty in the completeness and purity
function of the maxBCG catalog is far from the dominant
source of uncertainty in our analysis. Moreover, this uncertainty
elongates the error ellipse along its unconstrained direction, but
has a minimal impact on the best constrained combination of
σ8 and Ωm: Δσ8(Ωm/0.25)0.41 = 0.033 in our fiducial analysis,
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while Δσ8(Ωm/0.25)0.41 = 0.029 assuming perfect purity and
completeness, a mere 10% difference.

It is easy to understand why a 5% uncertainty in the purity
and completeness has a minimal impact in our results. For
N200 � 25, the statistical uncertainties in the cluster abundances
are larger than the 5% uncertainty in the counts from purity
and completeness. Since the best constrained combination of
cosmological parameters is driven primarily by high mass
clusters, a 5% uncertainty in the purity and completeness
functions has little impact on this parameter combination. How
far the error ellipse extends along the degeneracy, however, is
primarily driven by the observational constraints on the low
end of the halo mass function (see Figure 6). Consequently, the
5% systematic uncertainty in the low richness cluster counts
elongates the error ellipse along its major axis.

We conclude that for the expected level of purity and
completeness of the maxBCG cluster sample, our cosmological
constraints are robust to these systematics.

5.1.2. Systematic Uncertainties of the Weak-lensing Mass Estimates

In Section 2.2, we discussed that the weak-lensing masses
of Johnston et al. (2007) were boosted by a factor of 1.18
to account for biases arising from scatter in the photometric
redshift estimates (Mandelbaum et al. 2008b). Even with such a
boost, the Johnston et al. (2007) and Mandelbaum et al. (2008a)
mass estimates were not consistent, which led us in Section 3.2
to introduce a mass bias parameter β that uniformly scales all
masses by the same amount in order to account for any remaining
biases. We now wish to explore how robust our results are to
our estimate of this systematic uncertainty.

Figure 9 illustrates what happens if we repeat our fiducial
analysis while doubling the width of the prior of β from β
from β = 1.00 ± 0.06 to β = 1.00 ± 0.12. We find that
the wider β prior significantly increases the uncertainty in the
parameter combination σ8(Ωm/0.25) from Δσ8(Ωm/0.25)0.41 =
0.033 to Δσ8(Ωm/0.25)0.41 = 0.045, corresponding to a 36%
increase of the error bar. Using this new, wider prior, we
find that the joint maxBCG+WMAP five-year likelihood result
in the cosmological constraints σ8 = 0.802 ± 0.023 and
Ωm = 0.261 ± 0.019, which constitute a ≈15% increase in
the uncertainty of each of these parameters, respectively. Even
with this wider prior, however, adding the maxBCG constraint to
the WMAP5 result improves the final cosmological constraints
on σ8 and Ωm by a factor of 1.6 relative to those obtained using
WMAP data alone.

We can understand the impact of the mass bias parameter on
our cosmological constraints using Figure 6. A wider prior on
β implies that the mass scale of the maxBCG clusters is more
uncertain, so the mass at which the cluster abundance is best
constrained, i.e., the point at which the two curves in Figure 6
cross each other, is more uncertain. Consequently, the cluster
normalization constraint σ8Ω0.41

m is weakened. The error along
the long direction of the error ellipse does not change because
the width of the mass range probed by the maxBCG clusters is
largely independent of an overall mass bias.

One of the curious results that we have found in our study
of the mass bias parameter β is that the prior and posterior
distributions of this parameter are different. In particular, we find
that given the priors β = 1.00 ± 0.06 and β = 1.00 ± 0.12,
the posterior distributions for β are β = 1.02 ± 0.06 and
β = 1.06 ± 0.12, respectively. Indeed, this explains why the
error ellipse for our wider prior is displaced to the left of that of
our fiducial analysis: the shift in β corresponds to a change in

the mass scale, which has to be compensated by a change in the
matter density parameter Ωm.

We conclude that the uncertainty in the weak-lensing mass
estimates of the maxBCG clusters is an important source
of systematic uncertainty in our analysis. In fact, it is the
dominant source of systematic uncertainty in our analysis. We
have explicitly considered the impact of photometric redshift
estimates for source galaxies as the source of this uncertainty,
but other biases to the lensing masses—for example, if the
fraction of miscentered clusters was over- or under-estimated
by Johnston et al. (2007)—would affect our results in a similar
way.

5.2. Prior-driven Systematics

Our analysis makes use of two important priors: that the only
two cosmological parameters of interest are σ8 and Ωm, and
that the scatter in the richness–mass relation can be determined
from X-ray studies as discussed in Rozo et al. (2009). Here, we
discuss how our results change if these priors are relaxed.

5.2.1. Cosmological Priors

After σ8 and Ωm, cluster abundance studies are most sensitive
to the Hubble parameter h and the tilt n of the primordial power
spectrum. In Figure 10, we illustrate how the constraints on the
σ8–Ωm plane are affected upon marginalization over h and n
using Gaussian priors h = 0.7 ± 0.1 and n = 0.96 ± 0.05.
As we can see, marginalizing over the Hubble parameter and
the tilt of the power spectrum elongates the error ellipse, but it
does not make it wider. Thus, the combination σ8Ω0.41

m remains
tightly constrained, and a joint maxBCG and WMAP five-year
data analysis is robust to the details of the priors used for
h and n when estimating the maxBCG likelihood function.
We also investigated whether a non-zero neutrino mass could
significantly affect our results. Using a prior

∑
mν < 1 eV,

we find that massive neutrinos do not significantly affect
our constrain on σ8(Ωm/0.25)0.41. We conclude that holding
the Hubble parameter and the tilt of the power spectrum
fixed does not result in systematic uncertainties in the joint
maxBCG+WMAP five-year data analysis.

5.2.2. The Impact of the Scatter Prior

In Rozo et al. (2009), we derived an empirical constraint
on the scatter of the richness–mass relation by demanding
consistency between X-ray, weak lensing, and cluster abundance
data. The recovered scatter, however, characterized the richness–
mass relation using a mass that was defined using an overdensity
of 500 relative to the critical density of the universe. In this
analysis, we use a density threshold of 200 relative to mean,
so the use of the X-ray derived scatter prior is justified only
if the scatter in the mass scaling between the two overdensity
thresholds is not the dominant source of scatter. While we fully
expect this assumption to hold, we have repeated our analysis
without use of the scatter prior in order to cross-check our
results.

Figure 10 summarizes our results. We find that our scatter
prior tightens the error ellipse along both its short and long
axis. This is as expected: without the scatter prior, the mass
scale of the maxBCG clusters becomes less constrained, and
consequently the halo mass function is less tightly constrained
at all scales. The best constrained combination of σ8 and Ωm

when dropping the Rozo et al. (2009) prior on the scatter in the
mass–richness relation is σ8(Ωm/0.25)0.48 = 0.841 ± 0.045.
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Figure 10. Effect of relaxing additional cosmological parameter priors on
σ8 and Ωm constraints. Lines show 68% confidence regions for our fiducial
analysis (solid), after marginalizing over Gaussian priors h = 0.7 ± 0.1 and
n = 0.96 ± 0.05 (dashed), and using only a flat prior on the scatter in mass at
fixed richness σM|N200 ∈ [0.1, 1.5] (dotted). We find that holding the Hubble
parameter and power-spectrum index fixed does not bias nor artificially tighten
our constraint on σ8Ω0.41

m . The scatter prior from Rozo et al. (2009) on σM|N200
employed in our fiducial analysis is found to have a significant impact on our
data. More specifically, dropping this scatter prior increases the error along
the short axis of our error ellipses by 36%. We have also explored whether
massive neutrinos significantly impact our constraint on σ8Ω0.41

m , and find that
for neutrino masses

∑
mν < 1 eV there is no degradation of the error.

This value represents a 36% increase in uncertainty relative to
our fiducial analysis. The joint maxBCG+WMAP5 constraints
in this case are σ8 = 0.805 ± 0.021 and Ωm = 0.264 ± 0.017.

Not surprisingly, prior knowledge of the scatter of the mass–
richness relation can significantly enhance the constraining
power of the maxBCG data set. Nevertheless, even without prior
knowledge in the scatter the joint maxBCG+WMAP constraints
improve upon the WMAP values by a factor of 1.7.

5.3. Parameterization Systematics

One of the most important systematics that need to be ad-
dressed in studies where the observable–mass relation is param-
eterized in some simple way is how to assess the robustness of
the results to changes in the parameterization of the observable–
mass relation. Here, we have assumed that the richness–mass
relation P (N200|M) is a lognormal of constant scatter and that
〈ln N200|M〉 varies linearly with ln M . We now investigate how
our results change if we relax some of these assumptions.

5.3.1. Curvature in the Mean Richness–Mass Relation

To investigate the impact of curvature in the mass–richness
relation, we assume 〈ln N200|M〉 is a piecewise linear function.
We first specify 〈ln N200|M〉 at three mass scales M1, M2,
and M3, and define the value of 〈ln N200|M〉 at every other
mass through linear interpolation in log-space. We set the
minimum and maximum reference masses to the same values
as before, M1 = 1.3 × 1014 M�, and M3 = 1.3 × 1014 M�.
The intermediate reference mass is set to the geometric average
of these two masses, ln M2 = 0.5(ln M1 + ln M3), or M2 =
3.66 × 1014 M�. Note this mass scale is very nearly the same as
the mass at which the halo mass function is best constrained.

Figure 11 shows how our cosmological constraints change
with the introduction of mass dependence on the slope of the
mean richness–mass relation 〈ln N200|M〉. We find that the thin
axis of the error ellipse is not significantly affected by this more

Figure 11. Effect of relaxing assumptions about the richness–mass relation
on σ8–Ωm constraints. Contours show 68% confidence limits for our fiducial
analysis (solid curve), assuming 〈ln N200|M〉 is a piecewise linear function
(dashed curve), and allowing σN200|M to vary linearly with mass (dotted curve).
Giving additional freedom to the richness–mass relation has a minimal impact
on our constraint on σ8Ω0.41

m . Moreover, using a likelihood ratio test, we find
that there is no evidence in the data for curvature of the richness–mass relation,
nor for a scatter that varies with mass. We conclude that our parameterization
of 〈ln N200|M〉 and σN200|M do not introduce any significant systematics in our
analysis.

flexible parameterization, while the long axis of the error ellipse
is somewhat lengthened. This is as expected: the high mass
end of the halo mass function is only sensitive to how richness
varies with mass for large M, and in this regime the more flexible
parameterization does not introduce significantly more freedom.
Thus, our data will tightly constrain the high mass end of the
halo mass function just as well as did before, leading to no
degradation in the error of σ8Ω0.41

m . Once the high mass end of
the richness–mass relation has been fixed, however, introducing
curvature in 〈ln N200|M〉 dilutes the information contained in
the low mass end of the halo mass function, thereby increasing
the error ellipse along its long axis. Note the robustness of the
σ8Ω0.41

m constraint also implies that the constraints of a joint
maxBCG+WMAP5 analysis are not significantly affected by
our choice of parameterization.

Irrespective of the impact our new parameterization of
〈ln N200|M〉 has on our cosmological constraints, it is fair to
ask whether or not there is significant evidence for curvature of
the mean richness–mass relation. Using a maximum likelihood
ratio test, we find that the increase in likelihood due to curva-
ture in the richness–mass relation is significant at the 50% level,
less than 1σ . Thus, there is no evidence for curvature in the
richness–mass relation. We have also explicitly confirmed that
the slopes of the low and high mass end of the richness–mass
relation are consistent with each other. Indeed, we find

d2 〈ln N200|M〉
d ln M2

∣∣∣∣
M=3.66×1014 M�

= 0.05 ± 0.07, (14)

where we have assumed

d2 〈ln N200|M〉
d ln M2

= f (M3) + f (M1) − 2f (M2)

0.52(ln M3 − ln M1)2
(15)

and f (M) = 〈ln N200|M〉.
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Figure 12. Effect of the minimum richness on σ8–Ωm constraints. Contours
show 68% confidence regions for our fiducial analysis (solid curve), an analysis
where we include an additional richness bin, ν = 9–10, at the low end of the
richness function (dashed curve), and an analysis where we drop the lowest
richness bins considered in our fiducial analysis. Our cosmological constraints
are consistent for all these analyses. We have also found that removing the most
massive clusters from our analysis has minimal impact on our cosmological
constraints.

5.3.2. Scaling of the Scatter in the Richness–Mass Relation with Mass

We now investigate whether allowing the scatter of the
richness–mass relation to vary with mass has a significant impact
on our cosmological parameters. For these purposes, we allow
the scatter σN200|M to vary linearly with ln M , and parameterize
it by specifying its values at the reference masses M1 =
1.3 × 1014 M� and M2 = 1.3 × 1015 M�. The value of σN200|M
at any other mass is obtained through linear interpolation.

Figure 11 compares the cosmological constraints we obtain
with our new model to those of our fiducial analysis with
constant scatter. Once again, we find that the “thin” axis of the
error ellipse is not significantly affected by the new more flexible
parameterization, while the long axis is slightly elongated.
The interpretation of these results is the same as those of
Section 5.3.1. We have tested for evidence of scaling of the
scatter in the richness–mass relation with halo mass using a
likelihood ratio test. The increase in likelihood due to a linearly
varying scatter is significant at the 39% level, implying there is
no evidence of mass dependence in the scatter of the richness–
mass relation in the data. We have also explicitly confirmed
that the scatter at the low and high mass ends probed by the
maxBCG cluster sample are consistent with each other. Indeed,
our constraint on the slope of the mass dependence of the scatter
in the richness–mass relation is

dσN200|M
d ln M

∣∣∣∣
M=3.66×1014 M�

= 0.00 ± 0.06, (16)

where we assumed

dσN200|M
d ln M

= σN200|M2 − σN200|M1

ln M2 − ln M1
. (17)

We note the velocity dispersion analysis in Becker et al. (see
2007) points toward some mass dependence in the scatter of
the mass–richness relation, though part of this discrepancy is
likely due to miscentering systematics (see Rozo et al. 2009, for
details). We are now in the process of reanalyzing the velocity
dispersion data updating both our treatment of systematics,

and substantially increasing the sample of spectroscopically
sampled galaxies, so we defer a detailed discussion of these
results to a future paper.

We conclude that our parameterization of the mean and scatter
of the richness–mass relation does not introduce systematic
errors in our analysis.

5.3.3. Richness Range Considered

We have tested whether there is cosmological information in
the richness range N200 > 120 by running MCMCs both with
and without the contribution of these clusters to the likelihood
function. We find that these two analyses yield nearly identical
results. We have also explicitly confirmed that our results are
robust to the lowest richness bin employed in the analysis. As
we might expect, removing the lowest richness bin increases our
uncertainties along the longer axis of the error ellipse as shown
in Figure 12. We also investigate adding a new lowest richness
bin, consisting of clusters in with N200 = 9–10, as well as the
mean mass for clusters in the range N200 = 9–11. This analysis
rotates the error ellipse very slightly compared to our fiducial
analysis, but does not significantly affect our results.

6. DISCUSSION

6.1. Comparison to Other Work

The main purpose of this section is to demonstrate two points:

1. The cosmological constraints from the maxBCG cluster
catalog are competitive with the state-of-the-art constraints
derived from low-redshift X-ray selected cluster samples.

2. Despite the markedly different analyses and sources of sys-
tematic uncertainty, the cluster abundance constraints from
the maxBCG cluster sample are in excellent agreement with
those of X-ray selected samples. This demonstrates the ro-
bustness of cluster abundance studies as a tool of precision
cosmology.

Given our goal, in this section we focus exclusively on the
most recent cosmological constraints derived from low-redshift
X-ray cluster samples. In particular, we explicitly consider only
three works: Mantz et al. (2008), who worked with the X-ray
luminosity function, Henry et al. (2009), who worked with the
X-ray temperature function, and Vikhlinin et al. (2009b), who
estimated the low-redshift halo mass function using the 400 day
X-ray survey (Burenin et al. 2007) with mass estimates based
on YX (Kravtsov et al. 2006). These three papers are the most
recent analyses of X-ray selected cluster samples, and all recover
tight cosmological constraints that are in excellent agreement
with one another, while carefully accounting for the relevant
systematics for each of their analyses.

Now, as we have discussed in previous sections, the main
result from low-redshift cluster abundance studies is a tight
constraint on the value of σ8Ωγ

m where for maxBCG clusters
γ = 0.41. Other cluster samples, however, will have slightly
different values of γ , which brings up the question of how can
we fairly compare these various constraints. One way would be
to simply quote the percent uncertainty in the relevant σ8Ωγ

m

combination. However, we would like to have a clear graphical
representation of this result. We have chosen to do this by
plotting the 68% confidence regions of a simplified version of a
joint cluster abundance+WMAP5 analysis assuming a neutrino-
less flat ΛCDM cosmology. We proceed as follows: given a
cluster abundance experiment, we consider only the constraint
on σ8Ωγ

m, disregarding all other cosmological information. We
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Table 5
Cosmological Constraints From Multiple Cluster Abundance Experiments

Source Reference γ σ8(Ωm/0.25)γ σ8 Ωm

MaxBCG Richness Function This work 0.41 0.832 ± 0.033 0.807 ± 0.020 0.270 ± 0.019
X-ray Luminosity Function Mantz et al. (2008) 0.62 0.85 ± 0.07 0.809 ± 0.028 0.272 ± 0.026
Temperature Function Henry et al. (2009) 0.30 0.80 ± 0.04 0.795 ± 0.023 0.258 ± 0.025
Mass function estimated with YX Vikhlinin et al. (2009b) 0.47 0.808 ± 0.024 0.798 ± 0.017 0.260 ± 0.014

Notes. The σ8 and Ωm constraint from the maxBCG+WMAP5 analysis quoted here differs very slightly from that presented in Figure 5 because of the
simplified approach we have taken in this section for deriving the constraints (see the text for details). Note Vikhlinin et al. (2009b) quote their result
as σ8(Ωm/0.25)0.47 = 0.813 ± 0.013 (stat) ± 0.02 (sys). For this study, we have simply added these two uncertainties in quadrature.

Figure 13. Comparison of optical and X-ray cluster abundance constraints
on σ8–Ωm. Contours show 68% confidence regions for a joint WMAP5 and
cluster abundance analysis assuming a flat ΛCDM cosmology. In addition to
our results (filled ellipse), we consider the latest cluster abundance constraints
from the low-redshift cluster luminosity function (dashed; Mantz et al. 2008),
temperature function (dash-dotted; Henry et al. 2009), and mass function as
estimated with YX (solid; Vikhlinin et al. 2009b). All four studies are in excellent
agreement with each other despite the tight cosmological constraints and the
different sources of systematic uncertainty among the various analyses.

then add a WMAP5 prior σ8(Ωm/0.25)−0.312 = 0.790 ± 0.024,
which corresponds to the thin axis of the error WMAP5 error
ellipse in the σ8–Ωm plane, and we compute the corresponding
68% confidence regions in the σ8–Ωm plane.

The result of this exercise is shown in Figure 13. The
specific constraints from each of the works considered here
are presented in Table 5. The agreement among the different
analyses is excellent despite the tight error bars and the different
sources of systematic uncertainties. This agreement clearly
demonstrates not only that optically selected cluster samples
can produce cosmological constraints that are competitive with
those of X-ray selected cluster samples, but also that systematic
uncertainties have been properly estimated.

6.2. Low-redshift Cluster Abundances and The Equation of
State of Dark Energy

Detailed analyses exploring how cluster abundances help im-
prove dark energy constraints have been presented by previous
groups, most recently by Mantz et al. (2008) and Vikhlinin et al.
(2009b). Rather than duplicating their work, in this section, we
opt for performing a simple analysis that captures the essen-
tial physics behind the Mantz et al. (2008) and Vikhlinin et al.
(2009b) results, which helps illustrate exactly why and how
clusters complement cosmic microwave background (CMB),
supernova (SN), and Baryon Acoustic Oscillation (BAO)
studies.

We begin by focusing on the somewhat surprising result by
Vikhlinin et al. (2009b) that a joint WMAP5 and low-redshift
cluster abundance experiment does not produce an interesting
constraint on the equation of state of dark energy w. The reason
this is surprising is that WMAP5 has measured the amplitude of
the power spectrum at recombination to high accuracy. Given
this value and a cosmological model, one can predict the value
of σ8 today. By demanding that this prediction agrees with
the cluster normalization condition, one ought to obtain a tight
constraint on the dark energy equation of state.

To understand why this is not the case, consider first the
WMAP5 results. The parameters w and Ωm are strongly
degenerate given the WMAP5 data alone, as shown in Figure 14.
The value of σ8 implied by the WMAP5 data depends sensitively
on these two parameters, so a large uncertainty in w and Ωm

dramatically increases the area of the σ8–Ωm plane allowed by
the WMAP5 data. Moreover, we can see from Figure 14 that
the WMAP constraint goes from being orthogonal to the cluster
normalization condition to being parallel to it, implying that the
cluster normalization condition cannot improve upon the dark
energy constraints of WMAP alone. Indeed, a prior of the form
σ8(Ωm/0.25)0.41 = 0.832 ± 0.033 has a minimal impact on
the error bar in w. Fortunately, given this understanding, it is
easy to see how to improve this situation: we need to introduce
an additional observable which breaks the w–Ωm degeneracy.
As an example, in the above figures we also show the 68%
confidence intervals obtained for three additional analyses:

1. A joint WMAP5+BAO analysis, which includes the dark
energy constraints derived by Eisenstein et al. (2005) using
the BAO measurement from the SDSS luminous red galaxy
sample.

2. A joint WMAP5+SN analysis, which draws on the Union
combined data set (Kowalski et al. 2008), a compilation of
SN data composed of the Riess et al. (2004, gold sample
only), Astier et al. (2006), and Miknaitis et al. (2007) SN
samples.

3. A joint WMAP5+BAO+SN analysis, which adds both BAO
and SN measurements as extra observables.

In all cases, the confidence contours are estimated based on
the MCMC data made publicly available by the WMAP team
through the LAMBDA Web site (http://lambda.gsfc.nasa.gov/).
These data sets break the w–Ωm degeneracy from the WMAP5
data alone, and they restore the complementarity between
WMAP5 and the cluster normalization condition in the σ8–Ωm

plane, as illustrated in the lower panel of Figure 14.
Figure 15 shows the constraints in the w–σ8(Ωm/0.25)0.41

plane for the various analyses considered in Figure 14. The
corresponding cosmological constraints are summarized in
Table 6. In order to compute how cluster abundances improve
cosmological constraints, we have simply added the cluster

http://lambda.gsfc.nasa.gov/
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Figure 14. Parameter constraints on the w–Ωm plane (left panel) and σ8–Ωm plane (right panel) in a flat wCDM cosmology, for various data combinations. All contours
shown are 68% confidence, and are obtained using the MCMC chain outputs downloaded from the LAMBDA Web site (http://lambda.gsfc.nasa.gov/). Despite the
fact that the WMAP5 data constrain the amplitude of the primordial power spectrum with comparable accuracy in both a ΛCDM and wCDM cosmology, allowing w

to vary introduces a large degeneracy between w and Ωm. This degeneracy severely degrades the WMAP constraints in the σ8–Ωm plane, as seen in the right panel.
Adding new observables that break the w–Ωm degeneracy restores the complementarity between WMAP5 and clusters in the σ8–Ωm plane, which helps improve dark
energy constraints through the growth of structure.

Table 6
Cosmological Constraints in a Flat wCDM Cosmology

Experiment Ωm w σ8

WMAP5 0.266 ± 0.086 −1.05 ± 0.34 0.811 ± 0.121
WMAP5+BAO 0.251 ± 0.027 −1.20 ± 0.24 0.885 ± 0.094
WMAP5+SN 0.274 ± 0.023 −0.98 ± 0.07 0.798 ± 0.053
WMAP5+maxBCG 0.265 ± 0.048 −1.07 ± 0.34 0.815 ± 0.061
WMAP5+SN+BAO 0.274 ± 0.015 −0.995 ± 0.067 0.808 ± 0.047
WMAP5+SN+maxBCG 0.274 ± 0.016 −0.978 ± 0.053 0.801 ± 0.026
WMAP5+BAO+maxBCG 0.258 ± 0.023 −1.097 ± 0.160 0.831 ± 0.044
WMAP5+BAO+SN+maxBCG 0.272 ± 0.013 −0.989 ± 0.053 0.805 ± 0.026

Notes. The constraints quoted here are derived by multiplying the WMAP5 likelihoods with a Gaussian
prior of our cluster normalization condition. We demonstrate in the text that results derived in this way are
nearly identical to those from more detailed treatments.

normalization condition derived within the standard ΛCDM
cosmological model as a prior. While one might worry that
letting the dark energy equation of state vary would degrade the
uncertainty in the cluster normalization condition, in practice
w has a minimal impact provided one restricts oneself to low-
redshift cluster samples. For instance, varying w by Δw =
0.1 changes the comoving distance to the median redshift
of maxBCG clusters by ≈1%. The growth function is even
less sensitive, varying by a mere ≈0.3%. Thus, the cluster
normalization condition from low-redshift cluster samples is
essentially independent of w.

To demonstrate this explicitly, we compare the results of
Vikhlinin et al. (2009b) to the results from our simple analysis
in which the cluster normalization condition σ8(Ωm/0.25)0.47 =
0.808 ± 0.024 from Vikhlinin et al. (2009b) is added to the
data sets mentioned above. For a joint WMAP+BAO+clusters
analysis, they find w = −0.97 ± 0.12 while our simple analysis
results in w = −1.04 ± 0.13. Note that the error bars are
nearly identical, while the central value for w differ by only
half a σ . This is still true after adding SNe as an additional
constraint, in which case they find w = −0.991 ± 0.045
compared to our w = −0.971 ± 0.048. A similar conclusion
can be reached for the Mantz et al. (2008) analysis. For a
joint WMAP+SNe +fgas+cluster abundance analysis, they find
w = −1.02 ± 0.06. With our simple analysis, and ignoring
fgas, we obtain w = −0.98 ± 0.06. This demonstrates that, to
high accuracy, current cluster catalogs improve cosmological

Figure 15. Confidence contours in the w–σ8(Ωm/0.25)0.41 plane for analyses
using various combinations of cosmological data. All contours indicate 68%
confidence. Provided the w–Ωm degeneracy from Figure 14 is broken by
an additional observable, cluster abundances can help constrain dark energy
through the growth of structure between the time of last scattering and the
low-redshift universe.

constraints on dark energy only through the low-redshift cluster
normalization condition.

In summary, we have shown that cluster abundances help
constrain the dark energy equation of state principally through
the cluster normalization condition at low redshifts, which con-

http://lambda.gsfc.nasa.gov/
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strains the growth of structure between the epoch of recombi-
nation and today. However, the intrinsic degeneracy between w
and Ωm given CMB data renders this test ineffective unless the
degeneracy is broken by an additional data set. It is also worth
remarking here that if we compare the results of a WMAP5+SN
analysis to those obtained after including the maxBCG clus-
ter normalization condition, the constraint on the dark energy
equation of state is only improved at the 25% level, going from
Δw = 0.07 to Δw = 0.054. This reflects the fact that distance–
redshift relationships tend to be more sensitive to w than the
growth of structure. Nevertheless, the good agreement between
the WMAP5+SN constraints and the cluster normalization is far
from trivial. Indeed, the WMAP5+SN likelihood contours in the
σ8–Ωm plane assume general relativity, so the good agreement
with our data indicates that we are not able to resolve any de-
partures from Einstein’s theory of gravity (see also Rapetti et al.
2009; Mortonson et al. 2009). While quantitative constraints on
such deviations are model dependent, our final error on σ8 allow
us to unambiguously state that models for which the growth
factor between last scattering and today differ from our best-fit
ΛCDM model by ≈6% can be ruled out at the 2σ level.

6.3. Prospects for Improvement

It is worth considering to what extent we can expect the cos-
mological constraints from maxBCG to improve with further
study. Given that the two principal sources of systematic uncer-
tainty are the amplitude of the weak-lensing mass calibration and
the prior on the scatter of the mass–richness relation, we focus
here on those two quantities. More specifically, we re-analyze
our data using artificially tight priors on each of these parame-
ters individually, as well as on both parameters simultaneously.
The tight priors adopted for this exercise are β = 1.00 ± 0.01
for the mass bias parameter, and σM|N200 = 0.45 ± 0.02 for the
scatter in mass at fixed richness. We find that the uncertainties
in S8 = σ8(Ωm/0.25)0.41 for each of these analyses are:

1. fiducial analysis: ΔS8 = 0.033;
2. tight scatter prior alone: ΔS8 = 0.026;
3. tight mass bias prior alone: ΔS8 = 0.025; and
4. tight mass bias and scatter prior: ΔS8 = 0.018.

Thus, a tight prior on either the mass bias or the scatter param-
eter improves the principal maxBCG cosmological constraint by
25%. If both priors are tightened, the improvement is as high as
50%. The corresponding constraint on w for this most optimistic
scenario, assuming a joint WMAP5+BAO+SN+maxBCG anal-
ysis, would be Δw = 0.049, which is only a 7% improvement
relative to the current constraint.

Are such improvements feasible? In principle, yes. Improve-
ment of the mass bias parameter is possible through a follow-up
spectroscopic program aimed at calibrating the mean lensing
critical surface density of the lens–source pairs used to esti-
mate the mean cluster masses. Likewise, an extensive X-ray
follow-up program could, in principle, constrain the scatter in
the mass–richness relation to high accuracy. In practice, real-
izing such tight priors might be difficult. For instance, given
the current scatter estimate σM|N200 = 0.45, we require ≈400
X-ray follow-ups to achieve an uncertainty of ΔσM|N200 ≈ 0.02.
Such an extensive program seems unlikely to be feasible any
time in the near future. What is needed, then is a way to signifi-
cantly reduce the number of follow-up observations necessary to
improve our cosmological constraints. Fortunately, the number
of follow-up observations necessary to achieve such accuracy
scales as the square of the scatter σM|N200 , so the best thing to do

at this point is probably to focus on constructing new richness
estimators that better correlate with halo mass (see, e.g., Rozo
et al. 2008; Reyes et al. 2008).

Finally, we note that there remains additional information
about the maxBCG clusters that has not yet been incorporated
into our analysis. This includes galaxy velocity dispersion data
(Becker et al. 2007), X-ray data (Rykoff et al. 2008, while
X-ray data was used to place a constraint on the scatter in mass
at fixed richness, we did not otherwise use the X-ray data in
this analysis), and clustering information (Estrada et al. 2008).
Including these additional probes of cluster mass should help
further improve our cosmological constraints.

7. SUMMARY

We have performed a joint analysis of the abundance and
weak-lensing mass estimates of the maxBCG clusters detected
using SDSS imaging data. In addition to this data, a prior on the
scatter in the mass–richness relation derived from demanding
consistency between the weak-lensing and X-ray mass estimates
of the clusters. Our cosmological constraints can be summarized
as

σ8(Ωm/0.25)0.41 = 0.832 ± 0.033, (18)

which is consistent with and complementary to the latest WMAP
results. With a joint maxBCG and WMAP5 analysis we find

σ8 = 0.807 ± 0.020,

Ωm = 0.265 ± 0.016. (19)

These results firmly establish optical cluster studies as a method
for deriving precise cosmological constraints. Importantly, our
results are in excellent agreement with and of comparable
precision to X-ray derived cluster abundance constraints, clearly
demonstrating the robustness of galaxy clusters as a tool of
precision cosmology.

We have discussed how and why galaxy clusters can help con-
strain dark energy evolution, demonstrating that even in those
data sets where the evolution of cluster abundance with redshift
is clearly detected, constraints on the dark energy density and
equation of state of a joint WMAP and cluster abundance anal-
ysis are dominated by the low-redshift cluster normalization
condition σ8Ωγ

m = constant. These joint constraints are driven
by the growth of the matter fluctuations between the time of
last scattering and the low-redshift universe. Thus, while clus-
ter abundances provide only moderate improvements to dark
energy constraints derived from joint WMAP and SNe analy-
sis, we have argued that they provide an important consistency
test of general relativity. More specifically, our constraint on
σ8 allows us to rule out at the 2σ level any models for which
the growth of structure between last scattering and today differs
from that of our best-fit ΛCDM model by more than ∼6%.

At this time, the dominant systematic uncertainty in our
analysis is the uncertainty in the weak-lensing mass scale due to
scatter in photometric redshift estimates of the source galaxies.
In addition, improvements to our understanding of the scatter of
the mass–richness relation could help tighten our cosmological
constraints. Follow-up observations can help in this regard, but
the number of follow-ups necessary to have a significant impact
on our results is currently very large. Fortunately, reducing the
scatter of the mass–richness relation (see, e.g., Reyes et al. 2008;
Rozo et al. 2008) may help reduce the number of follow-up
observations necessary to achieve improved constraints.
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