342 research outputs found

    Insulin and Glucagon Impairments in Relation with Islet Cells Morphological Modifications Following Long Term Pancreatic Duct Ligation in the Rabbit – A Model of Non-insulin-dependent Diabete

    Get PDF
    Plasma levels of glucose, insulin and glucagon were measured at various time intervals after pancreatic duct ligation (PDL) in rabbits. Two hyperglycemic periods were observed: one between 15–90 days (peak at 30 days of 15.1 ± 1.2mmol/l, p < 0.01), and the other at 450 days (11.2 ± 0.5 mmol/l, p < 0.02). The first hyperglycemic episode was significantly correlated with both hypoinsulinemia (41.8 ± 8pmol/l, r= –0.94, p < 0.01) and hyperglucagonemia (232 ± 21ng/l, r=0.95, p < 0.01). However, the late hyperglycemic phase (450 days), which was not accompanied by hypoinsulinemia, was observed after the hyperglucagonemia (390 days) produced by abundant immunostained A-cells giving rise to a 3-fold increase in pancreatic glucagon stores. The insulin and glucagon responses to glucose loading at 180, 270 and 450 days reflected the insensitivity of B- and A-cells to glucose. The PDL rabbit model with chronic and severe glycemic disorders due to the predominant role of glucagon mimicked key features of the NIDDM syndrome secondary to exocrine disease

    Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq

    Get PDF
    International audienceThe verification of floating-point mathematical libraries requires computing numerical bounds on approximation errors. Due to the tightness of these bounds and the peculiar structure of approximation errors, such a verification is out of the reach of generic tools such as computer algebra systems. In fact, the inherent difficulty of computing such bounds often mandates a formal proof of them. In this paper, we present a tactic for the Coq proof assistant that is designed to automatically and formally prove bounds on univariate expressions. It is based on a formalization of floating-point and interval arithmetic, associated with an on-the-fly computation of Taylor expansions. All the computations are performed inside Coq's logic, in a reflexive setting. This paper also compares our tactic with various existing tools on a large set of examples

    Automatic Verification of Finite Precision Implementations of Linear Controllers

    Get PDF
    We consider the problem of verifying finite precision implementation of linear time-invariant controllers against mathematical specifications. A specification may have multiple correct implementations which are different from each other in controller state representation, but equivalent from a perspective of input-output behavior (e.g., due to optimization in a code generator). The implementations may use finite precision computations (e.g. floating-point arithmetic) which cause quantization (i.e., roundoff) errors. To address these challenges, we first extract a controller\u27s mathematical model from the implementation via symbolic execution and floating-point error analysis, and then check approximate input-output equivalence between the extracted model and the specification by similarity checking. We show how to automatically verify the correctness of floating-point controller implementation in C language using the combination of techniques such as symbolic execution and convex optimization problem solving. We demonstrate the scalability of our approach through evaluation with randomly generated controller specifications of realistic size

    Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    Get PDF
    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA

    Polynomial function intervals for floating-point software verification

    Get PDF
    The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs

    Vancomycin-induced Henoch-Schönlein purpura: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Henoch-Schönlein purpura is a small-vessel systemic vasculitis. Although its exact pathophysiology remains unknown, Henoch-Schönlein purpura has been reported in association with various medical conditions including hypersensitivity. We report the case of a patient with vancomycin-induced Henoch-Schönlein purpura.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian man who had previously undergone a heart transplant was diagnosed as having an intra-abdominal abscess after he underwent a Hartmann procedure. At 15 days after initiation of antibiotic therapy including vancomycin, he developed a purpuric rash of the lower limbs, arthralgia, and macroscopic hematuria. At that time, our patient was already on hemodialysis for end-stage renal disease. Henoch-Schönlein purpura was diagnosed. After a second 15-day course of vancomycin, a second flare of Henoch-Schönlein purpura occurred. Skin biopsies showed leucocytoclastic vasculitis with IgA deposits and eosinophils in the peri-capillary inflammatory infiltrate, suggesting an allergic mechanism. After vancomycin was stopped, we did not observe any further flares. Only five cases of isolated cutaneous vasculitis, one case of lupus-like syndrome and one case of Henoch-Schönlein purpura after vancomycin treatment have been described to date in the literature.</p> <p>Conclusions</p> <p>Clinicians should be aware that systemic vasculitis can be induced by some treatments. Vancomycin is a widely prescribed antibiotic. Occurrence of rare but serious Henoch-Schönlein purpura associated with vancomycin requires its prompt discontinuation.</p

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy

    Get PDF
    The diagnostic criteria for focal cortical dysplasia type I (FCD I) remain to be well and consistently defined. Cortical layer-specific markers (CLM) provide a potential tool for the objective assessment of any dyslamination. We studied expression patterns of recognised CLM using immunohistochemistry for N200, ER81, Otx1, Map1b (subsets of V/VI projection neurones), Pax6, Tbr1, Tbr2 (differentially expressed in cortical neurones from intermediate progenitor cells), Cux 1 (outer cortical layers) and MASH1 (ventricular zone progenitors). Dysplasia subtypes included FCD I and II, dysplasias adjacent to hippocampal sclerosis (HS) or dysembryoplastic neuroepithelial tumours (DNTs); all were compared to neonatal and adult controls. Laminar expression patterns in normal cortex were observed with Tbr1, Map1b, N200 and Otx1. FCDI cases in younger patients were characterised by abnormal expression in layer II for Tbr1 and Otx1. FCDII showed distinct labelling of balloon cells (Pax6, ER81 and Otx1) and dysmorphic neurones (Tbr 1, N200 and Map1b) supporting origins from radial glia and intermediate progenitor cells, respectively. In temporal lobe sclerosis cases with dysplasia adjacent to HS, Tbr1 and Map1b highlighted abnormal orientation of neurones in layer II. Dyslamination was not confirmed in the perilesional cortex of DNT with CLM. Finally, immature cell types (Otx1, Pax6 and Tbr2) were noted in varied pathologies. One possibility is activation of progenitor cell populations which could contribute to the pathophysiology of these lesions

    The fraction of cancer attributable to ways of life, infections, occupation, and environmental agents in Brazil in 2020

    Get PDF
    Many human cancers develop as a result of exposure to risk factors related to the environment and ways of life. The aim of this study was to estimate attributable fractions of 25 types of cancers resulting from exposure to modifiable risk factors in Brazil. The prevalence of exposure to selected risk factors among adults was obtained from population-based surveys conducted from 2000 to 2008. Risk estimates were based on data drawn from metaanalyses or large, high quality studies. Population-attributable fractions (PAF) for a combination of risk factors, as well as the number of preventable deaths and cancer cases, were calculated for 2020. The known preventable risk factors studied will account for 34% of cancer cases among men and 35% among women in 2020, and for 46% and 39% deaths, respectively. The highest attributable fractions were estimated for tobacco smoking, infections, low consumption of fruits and vegetables, excess weight, reproductive factors, and physical inactivity. This is the first study to systematically estimate the fraction of cancer attributable to potentially modifiable risk factors in Brazil. Strategies for primary prevention of tobacco smoking and control of infection and the promotion of a healthy diet and physical activity should be the main priorities in policies for cancer prevention in the country. \ua9 2016 Azevedo e Silva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore