
Noname manuscript No.
(will be inserted by the editor)

Polynomial Function Intervals for Floating-Point Software
Verification

Jan Duracz · Michal Konečný

Received: date / Accepted: date

Abstract The focus of our work is the verification of tight functional properties of numeri-
cal programs, such as showing that a floating-point implementation of Riemann integration
computes a close approximation of the exact integral. Programmers and engineers writing
such programs will benefit from verification tools that support an expressive specification
language and that are highly automated. Our work provides a new method for verification of
numerical software, supporting a substantially more expressive language for specifications
than other publicly available automated tools.

The additional expressivity in the specification language is provided by two constructs. First,
the specification can feature inclusions between interval arithmetic expressions. Second,
the integral operator from classical analysis can be used in the specifications, where the
integration bounds can be arbitrary expressions over real variables. To support our claim of
expressivity, we outline the verification of four example programs, including the integration
example mentioned earlier.

A key component of our method is an algorithm for proving numerical theorems. This algo-
rithm is based on automatic polynomial approximation of non-linear real and real-interval
functions defined by expressions. The PolyPaver tool is our implementation of the algorithm
and its source code is publicly available. In this paper we report on experiments using Poly-
Paver that indicate that the additional expressivity does not come at a performance cost when
comparing with other publicly available state-of-the-art provers. We also include a scalabil-
ity study that explores the limits of PolyPaver in proving tight functional specifications of
progressively larger randomly generated programs.

This research has been sponsored by Altran Praxis Ltd and EPSRC grant EP/C01037X/1.

Jan Duracz
School of Information Science, Computer and Electrical Engineering,
Halmstad University, Sweden
E-mail: Jan.Duracz@hh.se

Michal Konečný
School of Engineering and Applied Science, Aston University
Aston Triangle, B4 7ET, Birmingham, UK
E-mail: m.konecny@aston.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78893914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2� �
-- This function computes an upper Riemann sum of the error function

-- scaled by sqrt(pi)/2, using a uniform partition of size n.

function erfRiemann(x : Float; n : Integer) return Float is
segmentSize : Float; -- size of one segment in the partition

result : Float; -- accumulator of the Riemann sum

segment : Integer; -- number of the current segment, starting from 0

segmentStart : Float; -- the starting point of the current segment

valueStart : Float; -- the value of the integrand at segmentStart

begin
segmentSize := x/Float(n); -- the integration range is 0..x

result := 0.0; -- initialise the accumulator

segment := 0; -- start with the first segment

while segment < n loop -- iterate over segments
segmentStart := Float(segment) * segmentSize;

valueStart := exp(-(segmentStart * segmentStart)); -- max at the start

result := result + segmentSize * valueStart; -- as e−(x∗x) decreasing

segment := segment + 1;

end loop;
return result;
end erfRiemann;� �(

erfRiemann(x, n) −
∫ x

0
e−t2 dt

)
∈

[
−(n + 1) · δ ,

x
n

(1 − e−x2
) + (n + 1) · δ

]

Fig. 1: A floating-point program and its functional specification parametrised by δ > 0.

Keywords non-linear numerical constraint solving · theorem proving · floating-point
software verification · polynomial intervals · validated computation · interval arithmetic

1 Introduction

The capability to efficiently specify and write useful programs and automatically prove them
correct is one of the holy grails of applied computer science. Tools for formal methods, such
as SPARK Ada [6], go some way to achieving this goal. There is some evidence [4] that
developers of safety-critical systems benefit from employing formal methods when obtain-
ing the required high-level certifications for their software. These certifications could be
obtained without formal methods, instead based on extensive and rigorous testing, but in
some cases such testing costs substantially more than the application of formal methods
[4]. The Tokeneer experiment conducted by the NSA [7] gives strong evidence that formal
methods can bring substantial savings also to the development process due to its emphasis
on thorough specification and early detection of defects. This work focuses on methods and
tools for formal verification of floating-point (FP) software, an area where there is currently
demand for improvement.

As an example, consider the Ada function erfRiemann and its specification shown in Fig-
ure 1. The Ada code and the specification are both hand-written. The function is intended to
compute an approximation of the integral that appears in the Gaussian error function (erf),
using an upper Riemann sum over a uniform partition of size n. The specification ties the
FP result of the function with the intended exact real meaning by bounding the absolute
error within an interval that depends on the values of x and n. Note that the bound can be

3

made arbitrarily tight by increasing the parameter n while decreasing the positive constant
δ closer to zero at a high enough rate. The minimum δ for which the contract holds depends
on the overall magnitude of the compound rounding error incurred during one execution of
the loop. The specification reflects the fact that, for very large n, the accumulated rounding
error outweighs the improvement in precision gained by refining the partition.

Most of the paper is devoted to our method of automatically proving that programs such
as erfRiemann meet tight functional specifications. Subsection 5.3 explores in more detail
how we have verified erfRiemann against the specification in Figure 1. The remainder of
this section clarifies how our approach advances the state-of-the-art and outlines its technical
content.

1.1 Related work

Published approaches to FP program verification can be classified by the level of specifica-
tion they aim to verify. Let us consider the following levels of specification for FP programs:

– Exception freedom: No overflow, division by zero, illegal parameter to square root, etc.
– Rough functional specification: Bounding the computed values with expressions, but

not attempting to describe the values exactly. The gap between the bounds is typically
so large that one cannot determine more than a few (if any) significant digits of the
computed FP values. This usually happens when using constant or linear bounds for a
nonlinear computation.

– Tight functional specification: As above, but the gap between the bounds is typically
small enough to ensure accuracy of some of the significant digits of the computed FP
numbers or to closely express the model error in the computation. The expressions often
relate the computation to its intuitive meaning, which tends to be a non-linear expression
featuring operators such as root, exponential, logarithm, sine, cosine, arctan, absolute
value, or integral.

– Very tight functional specification: The computed FP values are expressed exactly as
expressions in terms of the input FP values. The specifications need to take precise
account of rounding and typically depend on specific details of the FP arithmetic such
as rounding mode.

The above levels are progressively harder to specify and verify, besides that establishing
exception freedom is usually equivalent to establishing rough functional specification. Note
that in the process of verifying a tight functional specification, one usually verifies exception
freedom too.

How much can verification of various levels of specification be automated with current tech-
nology? Exception freedom and rough functional specification can be automatically derived
and verified, even for industrial-scale programs, using tools such as Astreé [12]. Tight and
very tight properties of human-authored programs typically cannot be automatically derived.
Tight properties can be automatically verified only for relatively short and simple programs,
and it is often necessary to manually add loop invariants. Very tight specification can be
automatically verified only for the simplest of programs. Verifying a non-trivial program
to this level usually requires significant human expert effort and represents a significant
achievement [8,9].

4

To our best knowledge, no other published tools can automatically verify erfRiemann with
its tight specification in Figure 1, even after adding a suitable loop invariant. We will now
explain why this is the case, focusing on some of the better known tools.

Abstract interpretation tools such as Astreé [12] or Fluctuat [15,22,32] do not address tight
functional specification.

Verification of a functional specification such as ours is typically performed in two steps.
First, one derives verification conditions (VCs), which are mathematical theorems that im-
ply the correctness of the programs.1 Second, one proves the VCs using a theorem prover.
This approach is common to SPARK Ada [5], Frama-C [13], and Why [20], and we adopt it
too. We therefore need to ask whether some of the available theorem provers can automati-
cally prove the VCs obtained for our example verification problem. These VCs will contain
variations of the formula in Figure 1, including the integral operator and interval inclusion.
For example, one of the VCs produced for the program in Figure 1 by SPARK is of the form

r −
∫ s~(x�n)

0 e−t2
dt ⊆ [−(s + 1) · δ, x

n (1 − e−(xs/n)2
) + (s + 1) · δ]

∧ s = n − 1

∧ (. . . omitted)

=⇒

r ⊕
(
(x � n) ~ exp

(
− ((x � n) ~ s) ~ ((x � n) ~ s)

))
−

∫ x
0 e−t2

dt

⊆ [−(n + 1) · δ, x
n (1 − e−x2

) + (n + 1) · δ]

where ⊕, ~, �, and exp are rounded (FP) addition, multiplication, division, and exponentia-
tion, respectively.

Automated numerical provers such as RealPaver [23], Gappa [14] and MetiTarski [3] cannot
at present deal with the integral operator. Also, while some of these provers support interval
expressions, none are general enough to express the interval in our specification.

The VCs can be expressed in full-featured interactive theorem provers such as Coq [10,11]
or PVS [30]. With suitable tactics one could perhaps automate their proof. Nevertheless,
we have not found a tactic that could automatically prove theorems that feature an integral
similar to the one in our example.

Inspired by our verification example, we identify the following two challenges:

Challenge 1 (Automation). Find a way to prove tight functional specifications of FP pro-
grams automatically and efficiently, i. e. in a push-button manner accessible to programmers
and engineers.

Challenge 2 (Expressivity). Automatically verify specifications involving parametrised in-
terval inclusions and the integral operator. This should happen with a comparable efficiency
as when verifying specifications not involving these constructs.

We consider RealPaver, MetiTarski, and Gappa to be the state of art in addressing Chal-
lenge 1 and we are not aware of any tool, beside ours, that addresses Challenge 2.

1 The derivation of VCs is automatic except for the derivation of loop invariants.

5

x

g
f

f↓ (outer approximation)

g↑ (inner approximation)

Fig. 2: Illustration of a numerical proof of an inclusion
of unary interval functions f and g.

D1

D2

touching (0, 0)

Fig. 3: Touching in the
inclusion D1 ⊆ D2

1.2 Contributions

– We present the essence of the algorithm in PolyPaver, our constraint-based numerical
theorem prover. This algorithm overcomes Challenge 2 and thus significantly extends
the state-of-the-art of automatic verification of FP programs. Our benchmarks in Sec-
tion 6 indicate that, despite the boost in expressivity, the algorithm performs comparably
to publicly available state-of-the-art provers in terms of its ability to prove numerical
theorems automatically and efficiently (Challenge 1). The following points outline how
the algorithm overcomes Challenge 2:

– Inequalities are decided using automatically computed polynomial approximations
of the functions given by the left- and right-hand-side expressions.

– Polynomial approximations are also computed for expressions with the integral op-
erator. PolyPaver can thus decide some tight properties featuring integrals.

– Our polynomial approximation approach naturally extends to approximating interval
expressions and thus deciding interval inclusions.

– We provide four FP programs with tight specifications, whose verification is challeng-
ing relative to the state-of-the-art as of April, 2013 (Section 5). These are suitable for
inclusion in FP program verification and numerical theorem proving benchmarks.

1.3 Overview of our proof method

In essence, a polynomial interval (PI) is a pair of polynomials [pL, pR] in variables x1, . . . , xm

ranging over some intervals x1, . . . ,xm, respectively. A PI usually represents some informa-
tion about a specific function f , namely that the graph of f lies between the graphs of pL

and pR on the whole domain x1 × x2 × · · · × xm.

Figure 2 illustrates how an interval inclusion statement ∀x ∈ x : f (x) ⊆ g(x) can be proved
using PIs. The left-hand-side real or interval expression f is “outwards” approximated by a
PI f ↓, indicated by dotted lines, and the right-hand-side interval expression g is “inwards”
approximated by a PI g↑, indicated by dashed lines. The inclusion is derived from f (x) ⊆
f ↓(x) ⊆ g↑(x) ⊆ g(x). An inequality is proved similarly but using outer approximations for
both sides of the inequality.

6

This approach relies on a separation between the boundaries of the regions defined by f and
g. As long as the boundaries are separated over a compact rectangular domain x, and the
expressions f and g contain only operators supported by our PI arithmetic, the arithmetic
can be used to automatically produce PI approximations f ↓ and g↑ tight enough to separate
the boundaries.

The following example gives an inclusion where such separation is not possible due to touch-
ing of the boundaries of the regions.

Example 1 (Touching) Consider the discs Dk = {(x, y) ∈ R2 |
√

x2 + (y − k)2 ≤ k} in the real
plane R2 (see Fig. 3). We have a theorem ϕ ≡ D1 ⊆ D2. There is touching in ϕ because the
boundaries of the discs D1 and D2 share the point (0, 0). ut

Our method does not prove inclusions or inequalities with touching except in rare cases such
as when the touching boundaries are polynomials of the same kind as used in the PIs. Our
method does not attempt to detect touching. If touching occurs only on a small part of the
domain, such as a single point, our method proves the theorem is true on all parts of the
domain except in an arbitrarily small neighbourhood of the area where touching occurs.

In numerical theorems without touching, we sometimes discuss an informal degree of tight-
ness which indicates the minimum distance between the supports of two constituent predi-
cates. The tighter a theorem is, the harder it is to find the separating approximations f ↓, g↑.

As explored in [18], a non-trivial complication arises when approximating an interval ex-
pression such as

√
x·[−1, 1] inwards. One first computes inner PI approximations of both

√
x

and [−1, 1] and then applies an inner-rounded PI product. The inner approximation of
√

x is
an interval, say [pL, pR], which is not an interval in the usual sense, because pL ≤ pR does
not hold. Instead, pL ≥ pR holds. We call such intervals inverted. Although the inner approx-
imation of

√
x is inverted, the inner approximation of the product

√
x · [−1, 1] = [−

√
x,
√

x]
is typically not inverted.

Thus, we have to account for inverted intervals, and define an arithmetic of PIs that works
for a mixture of normal and inverted intervals. Moreover, there can be PIs that are normal
on a part of the domain and inverted on another part of their domain. For example, an inner
PI approximation of the function interval [0, sin(x)] over x ∈ [0, 1] is typically inverted at
x = 0 but normal at x = 1. The approximation is likely to be inverted at x = 0 because the
exact interval [0, sin(x)] is a singleton at x = 0. We adopt the name generalised intervals for
pairs [α, β] without any restriction on the relative order of the endpoints α, β.

When defining operations for generalised function intervals, one of the hardest cases is mul-
tiplication. Kaucher [24] defined a multiplication of generalised real intervals that is suitable
for our purposes. Nevertheless, it is defined in 16 distinct cases when the operands are differ-
ent combinations of normal, reversed, covering zero or entirely positive or negative intervals.
This definition cannot be directly applied to function intervals, because, at different parts of
the function domain, the operand values can be at a different one of the 16 cases, possibly
covering all 16 cases in one pair of interval operands. The details of our solution to this
problem, as well as other issues related to the definition of PI arithmetic, are in Section 3.

The recurring issue when defining basic PI operations is the need for rounding consistently
over the whole domain of the PIs. Another perpetual concern is the growth of size of the
polynomials. Such growth is controlled by an operator for polynomial size reduction. These
issues makes the design and implementation of PI arithmetic fairly challenging.

7

An important feature of our PI arithmetic is that it is well suited for proving theorems that
involve indefinite integrals, thanks to the simplicity of integrating polynomials.

Polynomials have been used previously to approximate sets of functions but they all differ
substantially from our PIs. Taylor models (TMs) [25,27] are essentially function intervals
of constant width, centred around one polynomial. The TM approach has been proposed
as a general solution to the precision loss problem, but the merit of this approach has been
disputed in [28]. We believe that our PI approach is more promising than TMs for reducing
the dependency problem in constraint solving. PI multiplication is more accurate than TM
multiplication, thanks to using two different polynomials as bounds, as discussed in Subsec-
tion 3.3. Another improvement of our PIs over TMs is in the use of the Chebyshev basis,
which leads to a much improved rounding, as discussed in Subsection 3.1.

1.4 Outline of sections

Sections 2–4 give a formal account of the most important concepts of our numerical theorem
proving algorithm, while Sections 5–7 focus on practical applications of our method.

Section 2 starts the formal account by defining a general approach to proving inequalities
and interval inclusions by validated numerical approximation. Subsection 2.1 introduces
generalised intervals over partially ordered sets and the approximation order on these inter-
vals. Subsection 2.2 extends the concept of generalised interval to the concept of generalised
interval function and some operations and constructions involving interval functions. Sub-
section 2.3 formalises an extension of common order and inclusion predicates for intervals
and interval functions. Subsection 2.4 discusses how interval functions are used to approxi-
mate the values of numerical expressions and predicates. Subsection 2.5 introduces domain
subdivision as a technique to improve approximations of numerical expressions in the con-
text of deciding numerical predicates.

Section 3 provides some detail of our novel polynomial interval arithmetic. Subsection 3.1
specifies how multivariate polynomials are represented and defines a safe “rounding” of
polynomials to polynomials that can be represented in a bounded space. The remaining
subsections are dedicated to various approximate operations over polynomial intervals, cov-
ering addition, multiplication, pointwise maximum and minimum, division, exponentiation
and square root, and integration, respectively.

Section 4 describes PolyPaver’s algorithm for deciding formulas using domain subdivision,
the language of formulas supported by PolyPaver (Subsection 4.1), how these formulas are
approximately evaluated using polynomial intervals (Subsection 4.2), giving specific atten-
tion to the evaluation of integrals (Subsection 4.3).

A formal treatment of the derivation of a correctness theorem (i. e. verification conditions)
from a program-specification pair is outside the scope of this paper. Such treatment can be
found in [16].

The use of PolyPaver in program verification is illustrated in Section 5, where we discuss
how several programs are proved correct with respect to their formal functional specifica-
tion. The examples cover the computation of the error function (erf) using a rational approx-
imation (Subsection 5.1), computation of the square root using Newton’s iterative method
(Subsection 5.2), computation of the error function using a Riemann sum as introduced in
this section (Subsection 5.3), a selection of verified programs from the ProVal project (Sub-

8

section 5.4), and a program for computing the maximum of a quadratic interpolation of three
points, comprising several cooperating procedures (Subsection 5.5).

Section 6 considers PolyPaver as a general numerical prover, and compares it with other such
provers using several benchmarks. The first benchmark is based on a verification condition
from the square root verification example (Subsection 6.1). Subsection 6.2 compares the
provers based on several hand-crafted sequences of progressively more complex formulas.

Section 7 concludes the experimental part of the paper by reporting on a scalability study,
based on randomly generated formulas, studying the effect of arity, expression depth and
expression sizes on PolyPaver’s proof success rate and proving duration.

Section 8 concludes the paper and discusses possible avenues of further work.

2 Background

We take the same high-level approach to automated numerical theorem proving as RealPaver
[23]. This approach is based on safe numerical approximation and domain subdivision. The
main point of departure from RealPaver and other similar solvers is that we employ a more
precise interval arithmetic, namely the PI arithmetic introduced in Subsection 1.3 and out-
lined in Section 3. To prepare the ground for a presentation of our arithmetic, the remainder
of this section formalises the general approach to safe approximation of numerical theorems,
as well as of the expressions, relations, and predicates from which the theorems are built up.

2.1 Approximation in posets

Let (R,≤R) be a partially ordered set (poset) [29]. The poset of generalised intervals over
R, denoted (J(R),vR), is the set J(R) = {[a, b] | a, b ∈ R} of pairs of elements of R, equipped
with the refinement relation vR, defined by:

[a, b]vR [c, d] ⇐⇒ a≤R c and d ≤R b.

The conjugate of [a, b] ∈ J(R) is given by [b, a]. The sub-poset I(R) = {[a, b] | a≤R b} of
J(R) is usually called the poset of order intervals over R. We identify an order interval [a, b]
with the set {x ∈ R | a≤R x and x≤R b}, viewed as a sub-poset of R. The refinement relation
on J(R) coincides with the opposite of interval inclusion whenever [a, b] and [c, d] are order
intervals, i. e. [a, b]vR [c, d] ⇐⇒ [a, b] ⊇ [c, d].

We shall often refer to generalised intervals simply as intervals. We often omit the subscript
R in ≤R and vR.

With a v b, we say that a is an outer approximation of b, and conversely, b is an inner
approximation of a.

A function f : R → R is called isotonic if x ≤ y ⇒ f (x) ≤ f (y), and antitonic if x ≤
y ⇒ f (y) ≤ f (x), for all x, y ∈ R. Functions with multiple arguments are called isotonic
and antitonic if they are isotonic and antitonic in each argument, respectively. Functions on
intervals that are isotonic in the refinement order are of particular interest. Such functions
preserve the outer approximations in the following sense: If x is an outer approximation
of y (i. e. x v y) and g is an refinement-isotonic function, that also provides an outer

9

approximation of f (z) for every z, then g(x) is an outer approximation of f (y), because
g(x) v g(y) v f (y). Dually, refinement-antitonic functions preserve inner approximations.

Note that in our context inverted intervals occur only when computing inner approxima-
tions, which occurs only while proving or disproving an interval inclusion as discussed in
Subsection 1.3. For deciding inequalities and other predicates, we compute only outer ap-
proximations and thus always obtain order intervals.

Due to reflexivity of partial orderings, I(R) is only empty if R is the empty set. There is a
canonical singleton map R ↪→ I(R), mapping elements x ∈ R to singleton intervals [x, x] ∈
I(R). We shall often identify poset elements with their corresponding singleton intervals, and
generally say that R is approximated by I(R) or J(R) through this identification.

2.2 Approximation of functions

Poset-valued functions form posets under pointwise ordering. Let X be a set and f , g : X →
R, then the pointwise order ≤X→R is defined by:

f ≤X→R g ⇐⇒ ∀x ∈ X : f (x)≤R g(x).

We may thus consider the poset of function intervals J(X → R) ordered under pointwise
refinement vX→R.

The approximation terminology transfers from ordinary intervals to function intervals as
follows. Given f , g,h ∈ J(X → R) such that f v g v h, we say that f is an outer
approximation of g over X, and that h is an inner approximation of g over X.

The map J(R) ↪→ J(X → R) taking an interval [l, r] to the singleton function interval
[λx.l, λx.r] is called the constant map, and function interval approximations using only con-
stant bound functions are called constant interval approximations.

A free variable in an n-ary expression can be approximated with no loss of precision using
a projection function in the following sense:

Definition 1 (Projection) Let x = (x1, . . . ,xn) ∈ I(R)n be a tuple of intervals. The function
interval [λx.xi, λx.xi] ∈ I (x→ R), where xi is the ith component of x ∈ x, is called the ith

projection over x, and denoted by proji(x).

When one is restricted to constant interval approximations, it is impossible to approximate
variables using projections. In such cases, one uses the constant interval approximation with
the domain whose value is the domain of the variable.

Refinement-isotonic function interval operations may be used to build up interval approxi-
mations of functions given by expressions with operators. The following example specifies
two simple function interval operations.

Example 2 (Interval operations) Consider the poset X → R of real-valued functions with
point-wise ordering and arithmetic operations, and the associated interval poset J(X → R).
Addition of intervals and scaling of intervals by real numbers are given by:[

f1, f2
]
+

[
g1, g2

]
=

[
f1 + g1, f2 + g2

]
, and

a ·
[
f , g

]
=

[
a f , ag

]
if a ≥ 0[

ag, a f
]

if a < 0

(1)

10

for a ∈ R. ut

See Kaucher [24] for a more complete set of refinement-isotonic arithmetic operations on
J(R), which can be point-wise extended to operations on J(X → R).

Next, we determine the form of outer interval approximations of elementary FP functions,
which we will need when such functions are used in the programs we attempt to verify. The
error of a function depends on its implementation. We adopt the method used to specify
FP elementary functions in the Ada language standard [1]. There, a FP function fun is ex-
pressed in terms of the exact real function f that fun is indented to compute and a maximum
relative error εfun as follows:

fun(x1, . . . , xn) ∈
(
1 + [−εrel, εrel]

)
(1 + [−εfun, εfun]) · f (x1, . . . , xn) + [−εabs, εabs] (2)

where εrel = βp−1 and εabs = βemin , with β, p and emin being the base, precision, and minimum
exponent of the FP format, respectively. In the above, the scaling factor (1 + [−εfun, εfun])
encloses the truncation error of the implementation and the remaining terms account for one
final rounding of the result into the respective FP format.

Thus, (2) tells us that the total approximation error made when computing with a standard-
compliant implementation fun of an elementary function f can be bounded in terms of
an interval expression. For each choice of input values x1, . . . , xn to the function the error-
bounding expression is given by the right-hand side of (2) which, for each floating point
format, varies only in the function f and the real number εfun. We can therefore write (2) in
a more succinct form by introducing the generalised outward-rounding operator Sout below.
The operator is an interval function defined by:

Sout(e, y) =
(
1 + [−εrel, εrel]

)(
1 + [−e, e]

)
y + [−εabs, εabs] (3)

for real numbers e and y, representing the maximal relative error εfun and function value
f (x1, . . . , xn), respectively. We may now write (2) in the more succinct form:

fun(x1, . . . , xn) ∈ Sout(εfun, f (x1, . . . , xn))

or even more succintly by lifting Sout to functions:

Sout(εfun, f) v fun. (4)

2.3 Interval approximation of predicates

Let B denote the set {t, f} of Boolean truth values, with t denoting true and f denoting false.
Relations ρ ⊆ Xn on some set X may then be viewed as B-valued functions ρ : Xn → B. We
extend B with the bottom value ⊥, denoting undecidedness, write B⊥ for the set {t, f,⊥},
and define the flat Boolean poset (B⊥,.), where the partial order relation . is determined
by ⊥ . t and ⊥ . f.

Relations ρ on posets R may be lifted to B⊥-valued functions ρI on the associated interval
poset I(R) in a canonical fashion. We define:

x ρI y =

t if for all x ∈ x, y ∈ y it holds x ρ y = t

f if for all x ∈ x, y ∈ y it holds x ρ y = f

⊥ otherwise
(5)

11

for x,y ∈ I(R). A solution of a predicate p : X → B is an x ∈ X such that p(x) = t and a
counterexample to p is an x ∈ X such that p(x) = f. To prove p over A ⊆ X is to show that
A is contained in the set of solutions of p, i. e. A ⊆ p−1(t), 2 and to disprove p over A is to
show that A contains a counterexample to p.

From now on we switch from general subsets A ⊆ X to order intervals A ∈ I(R), seen as
subsets of R. A predicate p is safely approximated over A ∈ I(R) by a functionAp : I(R)→
B⊥, ifAp(A) . p(x) for all x ∈ A. IfAp is a safe approximation over each A ∈ I(R), we call
Ap a safe interval approximation of p. In particular, safe interval approximations satisfy the
following property: if Ap(A) = t then A ⊆ p−1(t) and if Ap(A) = f then A ⊆ p−1(f), i. e.
safe interval approximations allow us to prove or disprove predicates.

Equation (5) above defines suitable safe interval approximations for most binary relations.

2.4 Safe numerical approximation

Safe interval approximations for atomic formulas such as f (x) ≤ g(x) are usually com-
puted using so-called natural interval approximations. Natural interval approximations are
obtained by interpreting the real number functions, operators, and the relation in the atomic
formula with corresponding interval extensions.

The simplest natural interval approximation is the one provided by constant interval exten-
sions. The following example illustrates its use.

Example 3 (Constant interval approximation) Consider the real predicate p : R→ B given
by x 7→ 5x

8 ≤
3+5x

8 . A safe approximation Ap of p may be computed using constant inter-
val approximations for addition and scaling. We get Ap([0, 1]) = A≤([0, 5

8], [3
8 , 1]) = ⊥,

where A≤ is the safe approximation ≤I of ≤ given by (5). 3 The result ⊥ means that the
approximationAp is too weak to decide p over [0, 1]. ut

The undecided result of Example 3 shows that safe approximations may severely over-
approximate, and often fail to decide seemingly trivial predicates. By dividing the decision
problem over the initial domain into decision problems over subsets, tighter approximations
of numerical expressions are obtained, leading to better approximations of the predicate over
the sub-domains. The following section describes this approach.

2.5 Domain subdivision

Domain subdivision is a method for improving an approximation of a predicate by reduc-
ing the size of the domain of the predicate. Consider the predicate p from Example 3. We
were unable to decide p over [0, 1] because of an overlap between the interval approxi-
mation [0, 5

8] of the left hand side and [3
8 , 1] of the right hand side of the inequality. By

splitting the domain [0, 1] of p into the two halves [0, 1
2] and [1

2 , 1], and then using Ap

to approximate p over each half, we obtain: Ap([0, 1
2]) = A≤([0, 5

16], [3
8 , 1]) = t and

Ap([1
2 , 1]) = A≤([5

16 ,
5
8], [11

16 , 1]) = t.

2 We use the notation p−1 to denote the inverse image of p, i. e. p−1(b) = {x ∈ X | p(x) = b}.
3 A≤([0, 5

8], [3
8 , 1]) = ⊥ follows from (5) as neither x ≤ y nor x > y holds for all x ∈ [0, 5

8] and y ∈ [3
8 , 1].

12

We have proved that p is true over sets covering [0, 1], and thus true over all of [0, 1], using
the same approximationAp as in Example 3, but because the reduction in domain size led to
an improvement in the approximation of p, we managed to decide the predicate, paying the
cost of evaluating p twice. The fact that iterated subdivision creates an exponential number
of sub-problems means that the improvements in approximation come at an exponential
computational cost. It follows that many predicates become practically undecidable with
this approach. One such predicate is given in the following example.

Example 4 (Tight inequality) Consider the real predicate p : R → B given by x 7→ x ≤
x+2−n and its natural constant interval approximationAp. Clearly, p holds over all of R and
therefore over any subset, however evaluatingAp over an interval [a, b] yields:Ap([a, b]) =

A≤([a, b], [a + 2−n, b + 2−n]) =
(
[a, b] ≤ [a + 2−n, b + 2−n]

)
=

(
b ≤ a + 2−n), which holds if

and only if the width of the interval [a, b] is 2−n or less. ut

The order in which the sub-problems are processed (such as breadth- or depth-first) has
an effect on the number of subdivisions that need to be made to decide a predicate using
constant interval approximations. Deciding predicate p from Example 4 over the interval
[0, 1] requires splitting [0, 1] into sub-intervals of width ≤ 2−n. Thus there will be at least 2n

sub-problems, regardless of search strategy. The following example shows that the choice
of a search strategy can reduce the complexity class of a decision problem.

Example 5 (Search strategy affects complexity) Consider deciding the real predicate p given
by x 7→ x > 2−n over the interval [0, 1]. As in Example 4, sub-problems with domain width
larger than 2−n yield the undecided value ⊥. Using breadth-first search generates a best-
case exponential number of sub-problems before identifying a counterexample. On the other
hand, a left-biased depth-first search descends directly towards 0 and decides p by returning
f for the interval [0, 2−n], thus having proved the predicate false by exhibiting a nonempty
set of counterexamples, while generating a linear number of sub-problems. ut

While the predicates in Examples 3, 4, and 5 can be decided using constant approximations
and bisection, those with touching cannot, as is illustrated by the following example.

Example 6 (Undecided predicate) Let the predicate p : [0, 1] → B be given by x 7→ x > 0
and Ap be the natural constant interval approximation of p. Although Ap(x) = t for each
sub-interval x of [0, 1] that does not contain 0,Ap([0, y]) is undecided for each y > 0. Thus
one cannot decide p over [0, 1] in a finite time usingAp. ut

We have seen that the choice of search strategy can have a dramatic effect on the perfor-
mance of a decision procedure. Consider a variation on Example 6 where the predicate p
is given by x 7→ x < 0. Ap(x) = f for each interval x ∈ I([0, 1]) such that 0 <I x.
If left-biased depth-first strategy is chosen, then the decision problem will not be decided
within a finite number of subdivisions. Any other search strategy will decide the predicate
as soon as the strategy deviates from left-biased depth-first, thus encountering an interval of
counterexamples within a finite number of splits.

For predicates with more than one variable, there is another strategy choice beyond sub-
problem processing order. All variable domains may be subdivided at once, but this leads to
a rapid increase in the size of the sub-problem set, potentially exhausting the available space

13

resources. Usually, one variable domain is subdivided at a time, which introduces the choice
of a subdivision direction selection strategy.

A subdivision direction selection strategy determines the shape of the domain of sub-prob-
lems. As an illustration, consider a decision problem with two variables x1, x2 ∈ [0, 1].
The domain of the problem is clearly a unit square, but the domains of its immediate sub-
problems are non-square. Clearly, if x1 is split more often than x2, then the generated sub-
problems will have domains that are thin and long while if x2 is split more often than x1,
then sub-problems with wide and short domains are generated.

When deciding a formula in which there is a variable that does not influence the validity of
the formula, it is a waste of time to split that variable. A poor subdivision direction selection
strategy could lead to splitting only this variable, resulting in failing to decide a formula
that could possibly be easily decided with another strategy. To avoid this issue, we use a
subdivision strategy that revisits each variable within a finite number of iterations, such as
the round-robin or the largest-first splitting strategy. The round-robin strategy maintains
the proportions of the initial domain while the largest-first splitting strategy chooses the
variable with greatest domain width to split. As a consequence, largest-first splitting leads
to sub-problem domains with roughly the same width for each variable.

3 Polynomial Interval Arithmetic

As previously noted, constant interval approximations can be very inefficient. Often the
problem is that the chosen approximations are too coarse, meaning they over-approximate
ranges for expressions over a domain, forcing an exponentially costly subdivision loop. We
propose to alleviate this problem by making the accuracy of the numerical approximation
variable. With this variability, failing to decide does not immediately induce subdivision.
Instead the accuracy of the approximation is increased and the approximation re-computed,
now standing a better chance of deciding a Boolean value for the problem. This approach
will be computationally less costly than subdivision, provided that increasing the accuracy
has sub-exponential cost. The experiments reported in Subsection 5.2 support this thesis.

We increase the accuracy of approximations by using polynomial intervals (PIs), as briefly
introduced in Subsection 1.3. PIs are intervals of the form [pL, pR] where pL and pR are
polynomials of a certain degree over a certain domain I ∈ I(R)n. Constant intervals consid-
ered so far are a special case of PIs, namely those of degree zero. To construct safe polyno-
mial bounds for expressions, we use our polynomial arithmetic to compute upper and lower
approximations of the results of pointwise application of common arithmetic operators to
polynomials. In some sense, the polynomial arithmetic approximates pointwise functional
arithmetic in a way analogous to how FP arithmetic with directed rounding approximates
real number arithmetic. A bound on the degree and term size of all polynomials involved
in a computation is analogous to the FP precision used in an FP computation in the way it
implies a certain level of rounding.

The polynomial coefficients are taken from Fg, which is the set of all binary FP numbers
with g-bits long mantissas and g-bits long exponents. We call the number g the granularity4

of the FP number. The granularity of the polynomial coefficients is determined from the

4 We use the unusual term granularity here because we reserve the term precision for the size of intervals
and polynomial enclosures.

14

granularity used to express the endpoints of its domain I. Thus, when the domain becomes
very small, the polynomials gain more flexibility thanks to higher coefficient granularity
and the rounding errors for the associated polynomial arithmetic become smaller. In the ex-
periments reported in this paper, one does not need to exceed the granularity and exponent
range of the standard machine double FP format and therefore it is used in order to im-
prove speed. Nevertheless, our implementation of polynomial interval arithmetic supports
arbitrary granularity, should it be required.

To keep the polynomials within the specified limits, one often needs to reduce the degree
and/or term count of a polynomial while rounding upwards or downwards consistently over
the whole domain. We describe this operation first.

3.1 Degree and term-size reduction

We represent the polynomials by coefficients in the basis of the Chebyshev polynomials of
the first kind, denoted Ti(x) [26], instead of the more common power basis xi, in order to
facilitate size reduction that is both relatively efficient and relatively accurate.

Most of the useful properties of Chebyshev polynomials apply only when restricted to the
domain [−1, 1]. Therefore, from now on, instead of I ∈ I(R)n, the domain of pL and pR will
be the unit cube [−1, 1]n. We use the canonical affine transformation to translate between I
and the unit domain. For operations that are not point-wise, e.g. when defining a projection
x 7→ xi or when integrating, we take care to take the domain translation into account. For
example, variables in the original expression are translated to certain affine polynomials over
the unit domain and not to projections in the sense of Definition 1.

The general format used for a polynomial of degree (at most) m is:

p(x) =
∑

0≤ j1+···+ jn≤m

a j ·
∏

1≤i≤n

T ji (xi) where j = (j1, . . . , jn), a j ∈ Fg.

Sometimes we refer to such a polynomial using the short-cut notation Pm{a j}.

A reduction of the above polynomial to degree m′ < m rounding upwards is performed as
follows:

degR
m′ (Pm{a j})(x) =

∑
0≤| j|≤m′

a j ·
∏

1≤i≤n

T ji (xi)

 ⊕R

∑
R

m′<| j|≤m

∣∣∣a j

∣∣∣ (6)

where ⊕R and
∑

R refer to an upwards rounded addition and | j| = j1 + . . . + jn. The above
additions contribute to the coefficient of the constant term since T0(x) = 1.

When rounding downwards, the last sum in the formula will be subtracted rounding down-
wards (denoted 	L) instead of added rounding upwards (i. e. ⊕R).

The reduction (6) is majoring p thanks to the fact that Ti(x) maps the unit domain to [−1, 1].
If reducing by one degree only, this reduction is the nearest-best in the minimax norm (L∞)
according to [26, Corollary 3.4A, page 49]. More precisely, this corollary states that without
the sum term on the right, formula (6) gives the best reduction possible without the require-
ment of being upwards rounded. It follows that if the sum on the right and the addition
operator are exact, we get the best possible upwards-rounded reduction. Rounding spoils
this property, so we have in fact only a near-best reduction. When reducing by more than
one degree, a more substantial departure from the best upwards-rounded approximation is

15

Fig. 4: Reducing polynomial degree by removing terms is more accurate in the Chebyshev
basis than in the power basis. Upwards-rounded degree reduction of p = 1/4(1−x2−x3) to de-
grees 2 and 1. Chebyshev reductions are showed using dashed lines while power reductions
are showed using dotted lines.

made but still substantially better than when doing the same in the power basis. As we do not
currently have a compatible version of PI arithmetic in the power basis, we cannot conduct a
robust test to measure the difference between the bases. In Fig. 4 we illustrate the difference
between reductions in Taylor and power bases on an example polynomial.

Reduction in number of terms is performed analogously to degree reduction, except the
choice of terms to eliminate is guided by the absolute value of the coefficients — the smallest
ones are eliminated and their coefficients added to (or subtracted from) the constant term.

3.2 Addition

Adding two PIs with outwards rounding (denoted ⊕↓) is fairly simple—it amounts to adding
the upper bound polynomials rounding upwards and adding the lower bound polynomials
rounding downwards:

[pL, pR] ⊕↓ [qL, qR] = [pL ⊕L qL, pR ⊕R qR].

An addition of polynomials that is correctly rounding upwards across the whole domain is
performed as follows:

Pm{a j} ⊕R Pm{b j} = Pm{a j ⊕L b j} ⊕R

∑
R

(
a j ⊕E b j

)
where ⊕L refers to a downwards rounded addition and ⊕E is the following upper bound on
the rounding error when performing addition:

a ⊕E b = (a ⊕R b) 	R (a ⊕L b).

Later, we will need similar error estimates for multiplication and sum, denoted ~E and
∑

E,
respectively. These are defined analogously.

This polynomial addition is correctly rounded upwards because the error in each non-
constant term is compensated for by a small increase in the constant term. The difference of
upwards and downwards rounded sum is an upper bound on the absolute value of the error in

16

upper polynomial
approximation

exact interval
product

lower polynomial
approximation

Fig. 5: The product of polynomial
intervals is not a polynomial inter-
val. An outer approximation of the
interval product [x, x + 1] · [−1, 1]
for x ranging over the unit domain
[−1, 1]. The exact product is en-
closed by all four slanted straight
lines, with piece-wise linear concave
boundaries.

the coefficient. This error estimate should be multiplied by the size of the basic Chebyshev
polynomials in the term but due to the restriction to the unit domain, this value is always
within [−1, 1].

To round downwards, all we need to change is the addition symbol preceding the summation
operator. Instead of an upwards rounded plus, it should be a downwards rounded minus.
Everything else can stay the same, except that a better bound is usually obtained when the
coefficients are summed rounding upwards instead of downwards.

3.3 Multiplication

PI multiplication is much more complicated than addition even before any coefficient round-
ing errors are considered. This is caused by the fact that, unlike with addition, we need to
consider both upper and lower bounds of both operands to determine the upper bound of the
product. This is illustrated using a simple example in Figure 5. Notice that with multiplica-
tion it is important that we use independent polynomials for lower and upper bounds. If we
were to use a single polynomial with a radius, we would need to use a much worse function
interval in Figure 5, most likely the constant interval [−2, 2]. In this example the difference
in the two bounds is magnified due to the fact that both operand enclosures cross zero. Even
when they do not cross zero, there is an advantage to separated bounds. For example, mul-
tiplying [x, x + 1] · [1, 2] with x ∈ [1, 2] gives us a trapezoid enclosure [x, 2x + 2], which is
much better than a parallelogram enclosure such as 1.5x + [−1, 3].

Formally, we define outwards-rounded generalised interval multiplication (denoted ~↓) as
follows:

[pL, pR] ~↓ [qL, qR] =[
minL (pL ~L qL, pL ~L qR, pR ~L qL, pR ~L qR) ,

maxR (pL ~R qL, pL ~R qR, pR ~R qL, pR ~R qR)
]

and note that as multiplication increases the degree of the polynomials, we usually apply ap-
propriate degree reduction for both bounds of the above interval. To complete the definition,
we need to say how individual polynomials are multiplied, rounding point-wise upwards or
downwards and, more crucially, how we estimate the minimum and maximum of multiplied
polynomials as a polynomial.

Let us start with the easier part, i. e. correctly rounded multiplication of polynomials. Poly-
nomial multiplication is worked out in a similar way as addition of polynomials, except that

17

∑
0≤| j|≤m

a j ·
∏

1≤i≤n

T ji (xi)

 · ∑
0≤| j|≤m

b j ·
∏

1≤i≤n

T ji (xi)

=

∑
0≤| j′ |≤m

0≤| j′′ |≤m

a j′ · b j′′ ·
∏

1≤i≤n

(
T j′i

(xi) · T j′′i
(xi)

) (distributive law)

=
∑

0≤| j′ |≤m

0≤| j′′ |≤m

a j′ · b j′′ ·
∏

1≤i≤n

T j′i + j′′i
(xi) + T| j′i− j′′i |

(xi)

2

 (by equation (7))

=
∑

0≤| j|≤2m

((∑
0≤| j′ |≤m

0≤| j′′ |≤m

j′± j′′3 j

(
a j′ · b j′′

))
·
∏

1≤i≤n

T ji (xi)
)

(distributive law,
grouping pairs of indices that yield
the same index vector j by some
combination of addition or difference)

where j′ ± j′′ =
{
j (∀i)(ji = j′i + j′′i or ji = | j′i − j′′i |)

}

Fig. 6: Multiplication of multivariate polynomials in Chebyshev basis.

it turns out to be a bit more complex as one has to pairwise multiply all terms using the rule:

Ti(x) · T j(x) = Ti+ j(x)/2 + T|i− j|(x)/2. (7)

An upwards rounded multiplication of polynomials is derived from the formula for polyno-
mial multiplication in exact arithmetic, shown in Figure 6. We use a rounded version of this
formula to work out the coefficients of the rounded polynomial product Pm(a j′) ~R Pm(b j′′).
Analogously to Figure 6, the coefficients c j of this product are computed as:

c j =
∑

L
0≤| j′ |≤m
0≤| j′′ |≤m
j′± j′′3 j

(
a j′ ~L b j′′

)
for j , (0, . . . , 0).

The constant term coefficient c(0,...,0) is first computed using the same formula as above,
which turns into: ∑

L
0≤| j′ |≤m,

(
0.5 ~L a j′ ~L b j′

)
when specialised for j = (0, . . . , 0). To compensate for the rounding during the computation
of each term j, we add to the constant term a number e j for each j:

c(0,...,0) =

(∑
L

0≤| j′ |≤m,

(
0.5 ~L a j′ ~L b j′

))
⊕R

∑
R

0≤| j|≤2m

e j

where each e j is computed as follows:∑
R

0≤| j′ |≤m
0≤| j′′ |≤m
j′± j′′3 j

(
0.5 ~R (a j′ ~E b j′′)

)
⊕R

∑
R

0≤| j′ |≤m
0≤| j′′ |≤m
j′± j′′3 j

(
0.5 ~E (a j′ ~L b j′′)

)
⊕R

∑
E

0≤| j′ |≤m
0≤| j′′ |≤m
j′± j′′3 j

(
0.5 ~L a j′ ~L b j′′

)

18

This concludes the description of how a safe upper bound on the product of two polynomials
in the Chebyshev basis is obtained. The lower bound is obtained dually, i. e. all imprecise op-
erations round upwards instead of downwards, the error term is calculated almost identically
but is subtracted from the constant term instead of adding it to it.

3.4 Maximum and minimum

Both maximisation and minimisation are reduced to a maximisation of the type maxR(0, p)
or maxL(0, p) as follows:

maxR(p, q) = q ⊕R maxR(0, p 	R q) minR(p, q) = p 	R maxL(0, p 	R q)

maxL(p, q) = q ⊕L maxL(0, p 	L q) minL(p, q) = p 	L maxL(0, p 	L q)

Assume that we know that the range of p is the interval [a, b]. When [a, b] does not contain
0, maxL(0, p) and maxR(0, p) are either 0 or p. When it does contain zero, we compose p
with a cubic univariate polynomial pC that approximates max(0, x) on [a, b], also shifting
the polynomial so that it is fully above or fully below max(0, x), depending on whether we
are computing upper or lower bound. The polynomial pC is uniquely determined by the
conditions pC(a) = 0, pC

′(a) = 0, pC(b) = b, pC
′(b) = 1 where pC

′ is the derivative of pC.

To safely evaluate pC(p), one needs interval multiplication, which, in turn, requires maximi-
sation. To break this cycle, we use for pC(p) a crude version of multiplication, denoted ~∗.
Instead of maximisation, this multiplication wraps the result with a cheap upper bound on
the width of the exact enclosure multiplication q · [pL, pR]. This upper bound is:

w = (|q| ~R |pR − pL|) ⊕R (q ~E pL) ⊕R (q ~E pR)

where |q| is an upper bound on the absolute value of the values of the polynomial q on its
domain. Using w, the crude multiplication is defined as follows:

q ~∗ [pL, pR] =
[
(q ~R pL) − w, (q ~L pL) + w

]
.

3.5 Division

Division is treated as a composition of a product and a reciprocal. The reciprocal is usually
not defined for 0. Whenever the interval [pL, pR] contains zero for at least one point in the
domain, we return the special “no information” interval [−∞,∞]. Since it is computation-
ally expensive to determine whether zero can be avoided, we do it for a degree 1 (affine)
reduction of the interval [pL, pR] and thus sometimes return [−∞,∞], even though a better
approximation exists and could be computed.

Assume we know that [pL, pR] is positive or negative throughout its domain. Then the re-
ciprocal is antitonic and thus we have 1/[pL ,pR] ⊆ [1 �L pR, 1 �R pL]. It remains to find a way
to approximate the reciprocal of a polynomial from above and from below by a polynomial
of a bounded degree. We first show how to do this without consideration of rounding errors.

19

Assume we want to approximate 1/p for a n-degree polynomial p by a m degree polynomial
q. Clearly we cannot find an approximation q with p · q = 1, i. e. there is no perfect approx-
imation. Our approach is to take a good polynomial approximation g of 1/x and substitute p
into it and reduce its degree.5 We transform the equation to x · g = 1 and relax it to

x · g(x) = 1 + c · Tm+1(x)

so that it is solvable. We choose the Chebyshev polynomial as the remainder in order to
distribute the error as evenly as possible modulo the weight 1/x, which means that errors
grow near 0 as expected. The m + 1 coefficients of g and c are computed as the solution
of a fairly simple regular system of m + 2 linear equations (one per degree term in the
Chebyshev basis) that can be solved in linear time using the τ method. To get an upper or
lower bound we need to shift g by c/2 up or down. Finally, we perform these operations
with the appropriate rounding mode to obtain a safe approximation despite using a rounded
arithmetic.

3.6 Exponentiation and square root

In essence, exponentiation of a PI is performed by carefully applying the polynomial bounds
to the standard Taylor expansion of ex up to a certain degree, as well as an appropriate es-
timate of the remainder. To reduce the size of the remainder, the polynomial is first trans-
formed using a linear transformation of the form (x/2k) + c so that its range lies in an area
where the Taylor series converges relatively fast, i. e. near 0. The result of the Taylor expan-
sion is then transformed back using the exponentiated inverse x2k

/ec.

One important aspect of this algorithm is in the choice of the size of the Taylor expansion.
As is the case with ordinary imprecise arithmetic, when raising the size, at some point the
rounding errors start dominating the extra precision gained by the extra terms. It is a subject
of further work to conduct a detailed analysis to determine optimal Taylor degrees for var-
ious situations. Currently, the degree has to be passed as an additional parameter to the PI
exponentiation operator.

The square root is computed in a similar manner, except that instead of terms of the Taylor
expansion we use a number of iterations of the Newton method for the equation 1/s2 − p = 0
to compute s = 1/√p and then invert it. The advantage of this method is that the iterations
do not involve polynomial division. Nevertheless, we need to carefully transform the PI to
make it fit into the stable range of this Newton iteration.

3.7 Integration

Integration of PIs is fairly straightforward using the standard equation:∫ x

0
Tn(t) dt =

1
2

(
Tn+1(x) − Tn+1(0)

n + 1
−

Tn−1(x) − Tn−1(0)
n − 1

)
,

which is an analogy in Chebyshev basis of the standard formula
∫ x

0 tn dt = xn+1/(n + 1).
As with the other operations, extra care has been taken to ensure that rounding is always
uniformly upwards or uniformly downwards on the whole domain of the function.

5 The actual implementation includes further optimisations.

20

4 Numerical Prover Algorithm

� �
1 input ϕ,xinit - - formula and the domain of its variables

2 Q ← singleton(xinit) - - create a queue containing a single element

3 while nonempty(Q) do
4 x ← dequeue(Q) - - remove the next element from the queue

5 if
[[
ϕ
]]
x = f then

6 return f alse - - formula disproved

7 if
[[
ϕ
]]
x = u then - - failed to decide formula

8 xL,xR ← splitLargestFirst(x) - - split the domain in half

9 enqueue(Q, xL, xR) - - add both sub-domains to the queue

10 return true - - formula proved� �
Fig. 7: Top-level algorithm to decide the formula ∀x1 ∈ x1, . . . , xn ∈ xn : ϕ.

Pseudo-code for the main loop of our prover is shown in Figure 7. The algorithm is based
on domain subdivision and safe numeric approximation, implementing a straightforward
translation of the semantics of interval expressions and relations that has been developed in
the preceding sections. The domains are subdivided using the largest-first splitting strategy
we introduced at the end of Subsection 2.5. The algorithm takes as input a formula ϕ and a
domain xinit = (x1, . . . ,xn) over which it is to decide the formula. We equate interval tuples
such as xinit with their Cartesian products, so that they can be seen as hyper-rectangles
within Rn. We use the term box for such a hyper-rectangle.

The formal grammar for formulas is presented in Section 4.1 and the valuation, or semantics,[[
ϕ
]]
x of a formula ϕ over the box x is defined in Section 4.2.

4.1 Correctness theorem language

In [18,19] we outlined an approach to the specification of FP programs using interval ex-
pressions to approximate the FP values computed by the program. An annotated language
based on WHILE with procedures [29] and a predicate transformer type logical semantics
were given in [16]. The semantics translates the annotated program to a correctness theo-
rem, which is a set of verification conditions (VCs). A proof that the generated VCs imply
an intuitive notion of correctness given in terms of operational semantics was also provided
in [16]. We will not address the proving of formulas with nested quantifiers, rather we will
be proving propositional formulas closed by outermost universal quantification. We also re-
strict our attention to the functions and relations appearing in the example programs erf
and sqrt given in Sections 5.1 and 5.2, respectively. Thus, the grammars for numeric terms
τ and formulas ϕ are given by:

τ ::= q | e | π | x | [τ1, τ2] | − τ |
√
τ | τ1 + τ2 | τ1 ∗ τ2 | τ1/τ2 | τ

τ2
1 |

∫
x∈[τ1 ,τ2] τ3 |

εabs | εrel | εabs | εrel | exp(τ) | τ1 ⊕ τ2 | τ1 	 τ2 | τ1 ~ τ2 | τ1 � τ2

ϕ ::= > | ⊥ | τ1 < τ2 | τ1 ≤ τ2 | τ1 = τ2 | τ1 ≥ τ2 | τ1 > τ2 | τ1 ∈ τ2 | τ1 ⊆ τ2 |

¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

21

where q ∈ Q and the circled operations ⊕,	,~, and � denote rounded versions of the usual
numeric operations of addition, subtraction, multiplication, and division, respectively. Cor-
rectness theorems are formulas ϕ in the grammar above with all their free variables closed
by a universal quantifier. The domain of each variable is obtained from the FP format in the
variable declaration or from a precondition. Thus, correctness theorems have the form:

∀x1 ∈ x1 · · · ∀xn ∈ xn . ϕ (8)

where x = (x1, . . . ,xn) is the domain box of the theorem and all the free variables in ϕ are
among {x1, . . . , xm}. We call the language of formulas of the form (8) the correctness theorem
(CT) language. The following section describes how the framework for safe approximation
of exact numerical, FP, and Boolean expressions described previously is applied to obtain
safe approximations for CT formulas.

4.2 Exact and approximate semantics for CT

The exact semantics of the grammar given on the preceding page is expressed in terms of
safe function interval approximations of predicates. The exact semantics, used to approxi-
mate FP expressions, is in turn approximated in the prover by means of safe PI approxima-
tions, as defined in the preceding section. Formally, the exact interpretation of a formula ϕ
is given by the map [[·]] : CT→ B⊥:[[

∀x1 ∈ x1 · · · ∀xm ∈ xm . ϕ
]]

=
[[
ϕ
]]
x (9)

where x = (x1, . . . ,xm), and
[[
ϕ
]]
x is defined recursively over the grammar of CT as follows:[[

ϕ1 c ϕ2
]]
x = Bc(

[[
ϕ1

]]
x ,

[[
ϕ2

]]
x)[[

¬ϕ
]]
x = B¬(

[[
ϕ
]]
x) (10)

for Boolean connectives c ∈ {∧,∨,→} with B¬ and Bc given by safe approximations of ¬
and c, respectively. The inclusion relation ⊆ and the membership relation ∈ both have exact
semantics B⊆ =B∈ given by the reverse refinement relation w on function intervals:

[[τ1 ⊆ τ2]]x = [[τ1 ∈ τ2]]x = [[τ2]]x v [[τ1]]x (11)

and are approximated in terms of PIs by:

[[τ2]]x v [[τ1]]x &

t if [[τ2]]PI ↑

x v
PI [[τ1]]PI ↓

x

f if [[τ2]]PI ↓
x 6v

PI [[τ1]]PI ↑
x

⊥ otherwise
(12)

where the inner and outer PI semantics [[τ]]PI ↑
x and [[τ]]PI ↓

x of terms are described below, and
vPI and 6vPI are safe PI approximations of v and 6v, respectively. Order relations r ∈ {<,≤,=
,≥, >} and Boolean literals have exact semantics Br,B⊥, and B> given by:

[[τ1 r τ2]]x = [[τ1]]x rI [[τ2]]x
[[⊥]]x = f

[[>]]x = t

(13)

22

where the interval relation rI corresponding to r is approximated by:

[[τ1]]x rI [[τ2]]x &

t if [[τ1]]PI ↓

x rPI
I [[τ2]]PI ↓

x

f if [[τ1]]PI ↓
x (¬r)PI

I [[τ2]]PI ↓
x

⊥ otherwise
(14)

where rPI
I is a safe PI approximation of the interval relation rI and ¬r is the strict opposite

version of the exact relation r, with e.g. ¬(≤) being >.

The refinement and interval order relation approximations in (12) and (14) use the outer PI
semantics [[τ]]PI ↓

x . The exact outer semantics B↓} and B↓exp of floating-point operations and
functions is given by the generalised outward rounding operator Sout from Section 2.2. It ap-
proximates FP expressions from below by pessimistically assuming that maximal rounding
errors arise from each constituent FP function. The exact outer semantics [[τ]]↓x is approxi-
mated from below by the outer PI semantics [[τ]]PI ↓

x defined for FP terms τ by:

[[τ1 } τ2]]PI ↓
x = B

PI ↓
} ([[τ1]]PI ↓

x , [[τ1]]PI ↓
x)

[[exp(τ)]]PI ↓
x = B

PI ↓
exp([[τ]]PI ↓

x)

[[ε]]PI ↓
x = [λx. − ε, λx.ε]

[[ε]]PI ↓
x = λx.ε

(15)

where } ∈ {⊕,	,~,�}, ε ∈ {εabs, εrel} and ε ∈ {εabs, εrel}. B
PI ↓
} and BPI ↓

exp are given in terms
of the natural outer PI extension SPI ↓

out of the exact operator Sout:

B
PI ↓
}

(
f1,f2

)
= S

PI ↓
out

(
[[ε}]]PI ↓

x ,f1 ◦
PI ↓ f2

)
=

(
1 +PI ↓ [−εrel, εrel]

)
∗PI ↓

((
1 +PI ↓ [[ε}]]PI ↓

x ∗
PI ↓ [−1, 1]

)
∗PI ↓

(
f1 ◦

PI ↓ f2
))

+PI ↓ [−εabs, εabs]

(16)

where ◦ ∈ {+,−, ∗, /} is the exact operation corresponding to } and ◦PI ↓ is an isotonic outer
PI extension of ◦ in the sense of Sections 2 and 3 and:

B
PI ↓
exp

(
f
)

= S
PI ↓
out

([[
εexp

]]PI ↓
x ,BPI ↓

e

(
f
))

(17)

where BPI ↓
e is an isotonic outer interval extension of the extended real exponential function.

In particular, the exact outer semantics approximates FP functions over an interval box x
with a function interval in J (x→ R±∞), where R±∞ denotes the poset of two-point extended
reals R ∪ {−∞,+∞}, with the ordering on R extended in the obvious way.

The exact interpretation Bγ of exact functions γ is given by the corresponding interval func-
tion and approximated in terms of PI extensions as follows:[[

γ(τ1, . . . , τk)
]]PI ↓
x = B

PI ↓
γ

(
[[τ1]]PI ↓

x , . . . , [[τk]]PI ↓
x

)[[∫
x′∈[τ1 ,τ2] τ3

]]PI ↓

x
=

(
B

PI ↓∫ (
[[τ3]]PI ↓

x′
)
◦

PI ↓

ix′
[[τ2]]PI ↓

x

)
−PI ↓

(
B

PI ↓∫ (
[[τ3]]PI ↓

x′
)
◦

PI ↓

ix′
[[τ1]]PI ↓

x

)
[[[τ1, τ2]]]PI ↓

x =

[
[[τ1]]PI ↓

x , [[τ2]]PI ↓
x

]
[[x]]PI ↓

x = projix (x)

(18)

23

where [a, b] = a and [a, b] = b denote the lower and upper bound of the interval [a, b],
respectively, and x′ is the domain box obtained from x by adding the variable x′ with the
following domain:

[[[τ1, τ2]]]PI ↓
x ↓ 0 (19)

and ◦PI ↓

ix′
denotes outer PI approximation of composition in the variable ix′ . The outer ap-

proximations BPI ↓
γ are given by isotonic outer PI extensions of the possibly exact functions

γ ∈ {
√
,+,−, ∗, /, ˆ ,

∫
}, where ˆ denotes the binary exponentiation operator. The exact se-

mantics of exact literals l ∈ {e, π} ∪ Q is given by the embedding of real numbers within
function intervals, [[l]]x = [λx.l, λx.l], and is approximated by outward rounding:

[[l]]PI ↓
x = [λx.lL, λx.lR]. (20)

Note that the above is compatible with the semantics for FP epsilons given in (15). Since the
epsilons are representable numbers, their resulting intervals are thin.

The containment relation approximations in (12) use both the outer PI semantics [[τ]]PI ↓
x and

the inner PI semantics [[τ]]PI ↑
x of terms. The latter is defined dually to the former. More

specifically, a definition of the inner semantics is obtained from (15)–(20) by:

– reversing left and right interval bounds, i. e. x becomes x and vice versa, in the interval
constructor equation in (18)

– reversing all downward arrows to upward arrows, except those in (19)
– replacing the isotonic outer interval extensions with antitonic inner interval extensions
– using the conjugate of the outward semantics for interval FP literals:

[[ε]]↑x = [λx.ε, λx. − ε] (21)

– and replacing the outward rounding Sout by the following inward rounding variant:

Sin(e, x) =
(
1 + [εrel,−εrel]

)(
1 + e[1,−1]

)
x + [εabs,−εabs] (22)

4.3 Note on the approximation of
∫ b

a f (x)dx

Equation (18) describes how outer PI approximations of definite integrals are obtained. First,
the integration variable domain is approximated by an outer interval approximation of the
ranges of the integration bound expressions, as described by (19). that a correct PI approxi-
mation of the primitive function is obtained. The domain box x is then extended by adding
the integration variable and its domain, denoting the new box x′, and an outer PI approxima-
tion of the primitive function of the integrand expression is constructed over x′. Finally, in
the resulting PI the integration variable is substituted with outer approximations of the two
bound expressions, yielding two PIs over x and these two are subtracted rounding outwards.

For an inner approximation of the integral most operations are computed rounding inwards.
Note though that there is one exception, namely that the approximation of the domain of the
integration variable is computed with outer rounding so that the box x′ certainly covers the
range of the integral bound expressions.

Currently, the implementation only supports integration of expressions that lead to monotone
primitive functions, due to a restriction on the substitution operator. We plan to remove this
restriction in the future.

24

The implementation also provides a parameter for the integration operation, called integra-
tion depth, intended to provide a means of increasing approximation precision for compu-
tational effort. If the integration depth is set to n, then the integration variable domain is
bisected n times and approximations of the integrand expression are computed over each
sub-interval, effectively yielding a piece-wise PI approximation over the original domain.
The piece-wise approximations are then safely combined over the range of each integration
bound expression separately, potentially resulting in tighter approximations of the bounds
with increasing depth.

In the following section we investigate how solving times for a particular theorem are af-
fected by the polynomial degree and integration depth parameters. The expectation is that
increasing either parameter should initially decrease solving times as improved precision
facilitates earlier decisions, and then increase as redundant precision no longer facilitates
earlier decisions while incurring additional cost.

5 Examples

This section shows in some detail how our method can be applied on specific verification
problems. First, Subsections 5.1 and 5.2 focus on two small examples, namely erf given in
Figure 8 and sqrt given in 11. One example has an integral operator and the other has an
interval inclusion in its specification. Thus each of these two examples focuses on one of the
two points of extended expressivity in contracts.

Subsection 5.3 provides some detail of solving the erfRiemann example from Figure 1 in
Section 1. This example is somewhat more involved than the first two as it features both
an integral and an inclusion in its specification and a loop in its code. Therefore, we do not
document it to the same level of detail as the other two examples. We restrict the discussion
to the choice of its loop invariant and state the most difficult VC generated for this program.

Subsection 5.4 provides details of how we tackled one of the more challenging examples
from the ProVal project in order to facilitate a comparison with the state-of-the-art methods
employed in this project.

Finally, Subsection 5.5 details a verification of a program that comprises multiple dependent
sub-programs.

When proving some of the harder VCs, we probe the conjecture that proof obligations for
FP properties benefit from higher-degree enclosures to reduce approximation error during
solving. An informal argument for this conjecture is that since precision loss in the arith-
metic may force subdivision, it follows that precision enhancement at sub-exponential cost
may delay subdivision and yield overall reduced solving effort.

Along with VCs for tight functional properties, exception freedom VCs are also generated
and checked.

PolyPaver attempts to decide a formula over the prescribed domain, meaning that it aims to
either prove or disprove it. PolyPaver disproves a formula by identifying a counterexample
in the shape of a box where the formula is false. To test this functionality, we simulate a
specification error in Subsection 5.1.3.

The experiments in this section were conducted on an Intel Core2 Duo 1.86 GHz machine
with 3GB RAM and 6MB cache, running Kubuntu 10.10, and timeouts were set to between

25

one and 24 hours. Proving would also be halted when attempting to split an interval with
neighbouring maximum granularity numbers as endpoints. PolyPaver was compiled with
the Glasgow Haskell Compiler (GHC) version 6.12.3.

5.1 Verification of erf

The Gaussian error function is often used to evaluate the cumulative density function of a
normally distributed random variable. It is given by the integral:

erf(x) =
2
√
π

∫ x

0
e−t2

dt.

It is well known that this integral has no closed form solution.

� �
1 procedure erf(in x ∈ F; out r ∈ F)
2 pre 0 ≤ x ∧ x ≤ 4
3 post 2

√
π

∫
t∈[0,x]

e−t 2
− 0.00005 ≤ r ∧ r ≤ 2

√
π

∫
t∈[0,x]

e−t 2
+ 0.00005

4 is
5 t1, t2, t3 ∈ F
6 begin
7 - - an encoding of a rational approximation of the error function, found in [2]:

8 t1 := 1.0 ⊕ 0.47047 ~ x;
9 t2 := t1 ~ t1;

10 t3 := t1 ~ t2;

11 r := 1.0 	 exp(−x ~ x) ~ (0.3480242 � t1 	 0.0958798 � t2 ⊕ 0.7478556 � t3);
12 end� �

Fig. 8: Implementation of the error function using a rational approximation.

Rather than computing the integral directly, the program erf, shown in Figure 8, uses a
rational approximation. According to [2], this approximation has a maximal absolute error
of less than 2.5 · 10−5. When taking rounding into account, the approximation’s error could
increase. Therefore we specified the accuracy to be ±5 · 10−5.

5.1.1 Correctness theorem

The correctness theorem for erf is shown as separate VCs (23)–(36) below, with the variable
x being universally quantified over the interval [0,4]:

0.47047 ~ x ∈ F (23)

1.0 ⊕ (0.47047 ~ x) ∈ F (24)

T ~ T ∈ F (25)

T ~ (T ~ T) ∈ F (26)

26

x ~ x ∈ F (27)

exp(−x ~ x) ∈ F (28)

0.3480242 � T ∈ F (29)

0.0958798 � (T ~ T) ∈ F (30)

0.3480242 � T 	 0.0958798 � (T ~ T) ∈ F (31)

0.7478556 � (T ~ (T ~ T)) ∈ F (32)

0.3480242 � T 	 0.0958798 � (T ~ T) ⊕ 0.7478556 � (T ~ (T ~ T)) ∈ F (33)

exp(−x ~ x) ~ S ∈ F (34)

1.0 	 exp(−x ~ x) ~ S ∈ F (35)
2
√
π

∫
t∈[0,x] e−t2

− 0.00005 ≤ 1.0 	 exp(−x ~ x) ~ S ≤ 2
√
π

∫
t∈[0,x] e−t2

+ 0.00005 (36)

where

T = 1.0 ⊕ (0.47047 ~ x)

S = 0.3480242 � T 	 0.0958798 � (T ~ T) ⊕ 0.7478556 � (T ~ (T ~ T))

and a ≤ b ≤ c abbreviates a ≤ b ∧ b ≤ c.

5.1.2 Proof

The exception freedom VCs (23)–(35) were all proved within 10 seconds for all polynomial
degrees. Minimal solving times were obtained for degree 0 intervals, for which all exception
freedom VCs were proved within 10 ms. Higher degrees yielded monotonically increasing
solving times, indicating that the additional precision and computational cost of higher-
degree polynomials was wasted.

The solving times for the functional correctness VC (36) are presented in Figures 9a and 9b
on page 28. Figure 9a shows how solving times depend on the chosen polynomial degree and
integration depth. Integration depth is explained in the fourth paragraph of Subsection 4.3.

The missing data points in Figure 9a, for integration depths 0 and 1, correspond to solving
being terminated due to an attempted splitting of an interval whose endpoints are neigh-
bouring FP numbers, indicating that a prohibitive number of sub-problems may have to be
evaluated to decide the formula over the initial domain. We conclude that, for the given pa-
rameters, the approximation precision is insufficient, forcing excessive splitting and leading
to an exponential growth of the sub-problem queue.

Figure 9b explores in some detail what happens for the missing data points in Figure 9a. For
some of these parameter combinations the theorem was not proved on the whole domain
x ∈ [0, 4] but it was proved on a subdomain of the form [0, xmax]. Figure 9b plots the
proportion of the domain [0, 4] on which the theorem was proved. The figure clearly shows
that the proportion increases monotonically with increasing degree and integration depth.

As expected, the proving durations shown in Figure 9a first decrease and then increase as
the polynomial degree increases. The shape is explained in terms of two main sources of
computational cost: average evaluation time per sub-problem and the number of computed
sub-problems. Increasing the degree leads to increased computational effort and, at least
initially, to improved precision. Improved precision leads to earlier decisions, reducing the

27

total amount of generated sub-problems. As long as the number of generated sub-problems
decreases faster than the average per-problem computation time, as functions of degree,
then the solving time graph should decrease as maximum degree increases. Eventually, an
optimal degree should be reached, after which additional degrees add comparatively little
precision, while incurring additional computational cost, meaning the graph should level
off and then start increasing. We also see that increasing the integration depth can have a
beneficial effect, reducing the minimum polynomial degree for which the minimum solving
time is achieved.

The conclusion drawn from the above example is that higher-degree polynomial enclosures
can improve the overall performance of a bisection search algorithm, at least when compared
to interval arithmetic using constant or low-degree polynomial bounds.

5.1.3 Counterexample discovery

To evaluate how PolyPaver performs at counterexample discovery, the postcondition was
changed to model what was felt as a reasonable implementation mistake, namely the reversal
of signs in a formula. The resulting false version of (36) is shown below.

2
√
π

∫
t∈[0,x] e−t2

+ 0.00005 ≤ 1.0 	 exp(−x ~ x) ~ S ≤ 2
√
π

∫
t∈[0,x] e−t2

− 0.00005 (37)

The solving efforts for (37) are presented in Figures 10a and 10b, showing solving time and
the number of computed sub-problems, respectively, as functions of degree. The solving
time graphs in Figure 10a are similar to the ones in Figure 9a but shifted towards lower
degrees. This is to be expected, since a counterexample can be identified anywhere, while
proving requires searching the entire domain.

The shapes of the graphs are again roughly convex, reflecting the characteristics of the Poly-
Paver algorithm as described in the preceding section.

The number of computed sub-problems until counterexample identification are plotted in
Figure 10b. Since the number of generated sub-problems depends on the approximation
precision, we can interpret the graphs as showing the initial benefit of increasing approxi-
mation effort and with it precision. As approximation effort is increased further, there is a
decrease in the improvement. At this point, added approximation effort yields little or no
improvement and the additional effort translates to computational overhead.

5.2 Verification of sqrt

In this section we describe a program that features interval terms and interval inclusions in
its specification. The chosen algorithm is an instance of Newton’s algorithm generating a
sequence of values converging to the square root of a real number x0 > 0. The sequence is
defined inductively as:

xn+1 =
1
2

(
xn +

x0

xn

)
(38)

for non-negative integers n.

28

 100

 1000

 6 8 10 12 14 16

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

degree

depth 0
depth 1
depth 2
depth 3

(a) The effect of polynomial degree on proving time for different integration depths.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

m
a

x
im

u
m

 p
ro

v
e

d
 x

degree

depth 0
depth 1
depth 2

(b) The effect of polynomial degree on the fraction of problem domain for which proof was completed, for
different integration depths.

Fig. 9: Performance of PolyPaver depending on polynomial degree and integration depth.
Proving VC (36), derived from a correctly specified erf program.

29

 10

 100

 1000

 4 6 8 10 12 14 16

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

degree

depth 0
depth 1
depth 2
depth 3

(a) The effect of polynomial degree on counterexample discovery time for different integration depths.

 10

 100

 1000

 4 6 8 10 12 14 16

c
o

m
p

u
te

d
 s

u
b

-p
ro

b
le

m
s

degree

depth 0
depth 1
depth 2
depth 3

(b) The effect of polynomial degree on the number of subproblems generated during counterexample discov-
ery, for different integration depths.

Fig. 10: Performance of PolyPaver depending on polynomial degree and integration depth.
Counterexample discovery for VC (37), derived from an incorrectly specified erf program.

30� �
1 procedure sqrt(in x ∈ F; out r ∈ F)
2 pre x ∈ [0.5, 2] - - the input x0 is restricted to a stable range

3 post r ∈ (1 + 4εrel)
√

x - - r is the square root of x0 modulo a small relative error

4 is
5 s ∈ F - - the previous value in the Newton iteration

6 begin
7 s := x; - - initially, the previous value is x0

8 r := (0.5 ~ x) ⊕ 0.5; - - ... while the current value is x1

9 while r , s assert r ∈ [− x2

4 + x, x2

4 + 1] do
10 - - the loop invariant provides bounds for r

11 s := r; - - the current value becomes the previous value

12 r := 0.5 ~
(
s ⊕ (x � s)

)
; - - the Newton step gives the new value

13 od
14 end� �

Fig. 11: Implementation of the square root function.

5.2.1 Implementation

Figure 11 contains an implementation of the algorithm we just described and its specifica-
tion. We have chosen to restrict the range for x in the precondition to eliminate the trouble-
some case for x near 0. This is perfectly reasonable, since any call to sqrtmay be preceded
with a conditioning step, where the values in the original range for x are multiplied with an
appropriate power of 4, resulting in a call to sqrt with 22k x rather than x, for some inte-
ger k. The result will then lie near 2k √x, which is multiplied with 2−k to obtain the sought
approximation of

√
x. Note that when using FP arithmetic in base β, multiplication and di-

vision with powers of β is exact, given that no overflow or underflow occurs. Therefore the
conditioning and normalisation steps introduce the least possible error.

Changing the input range for the program eliminates potential denormalised values for x,
which makes it possible to have a postcondition without an absolute error term.

In order to propagate the positivity property for r through successive iterations of the loop,
we need to provide a loop invariant encoding this information. As a first idea we may choose
r > 0, but this choice does not help to rule out overflows during division. Another choice
is r ∈ [x, 2] which introduces a less obvious problem, namely that of placing the fixpoint
of the loop body, occurring for x = 1 and r = 1, on the boundary of the loop invariant.
The problem with this is that VCs covering computation in the loop require us to show
that states satisfying the loop invariant are mapped to states that satisfy the loop invariant.
With a fixpoint on the boundary, this statement leads to a formula with touching, which
our approximation method cannot prove. The solution is to use a loop invariant that has
no fixpoints on its boundary. A sufficient condition is that the support of the invariant is
mapped properly into itself by the loop body. One such region is given by numbers r that
are bounded from above by x2

4 + 1 and from below by − x2

4 + x, yielding the loop invariant
r ∈ [− x2

4 + x, x2

4 + 1].

Our final concern is to ensure that the initial values of r and s validate the post condition
whenever they satisfy the loop exit condition, and that they otherwise validate the loop

31

invariant. This is achieved by setting the initial value of s to x and that of r to 0.5 ~ x ⊕ 0.5,
effectively unrolling the first iteration of the loop.

5.2.2 Termination

The program in Figure 11 typically terminates because the exit condition of the loop is an
equality that eventually holds thanks to the fact that the algorithm is stable and the numbers
are rounded to a finite set of FP values. Nevertheless, our method currently does not verify
termination as we target partial rather than total correctness. Instead, we assume termina-
tion, and seek to specify accuracy properties of the returned value.

It is possible to extend our method so that it can verify termination of loops. In such an
extension it would be quite hard to deal with the exit condition from Figure 11 because an
equality of FP expressions is very hard to prove using approximations.

The identification of classes of programs for which termination proofs may be tractable is
an interesting and important research direction. Progress in this area could make it safe to
employ natural expressions of algorithms, such as the one in Figure 11, in safety-critical
applications.

5.2.3 Correctness theorem

The correctness theorem Vcs for sqrt are presented below:

0.5 ~ x ⊕ 0.5 , x→ 0.5 ~ x ⊕ 0.5 ∈ [−
x2

4
+ x,

x2

4
+ 1] (39)

0.5 ~ x ⊕ 0.5 = x→ 0.5 ~ x ⊕ 0.5 ∈ (1 + 4εrel)
√

x (40)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ x � r ∈ F (41)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ r ⊕ (x � r) ∈ F (42)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ 0.5 ~

(
r ⊕ (x � r)

)
∈ F (43)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]∧0.5~

(
r⊕ (x� r)

)
, r → 0.5~

(
r⊕ (x� r)

)
∈ [−

x2

4
+ x,

x2

4
+ 1] (44)

r ∈ [−
x2

4
+ x,

x2

4
+ 1] ∧ 0.5 ~

(
r ⊕ (x � r)

)
= r → 0.5 ~

(
r ⊕ (x � r)

)
∈ (1 + 4εrel)

√
x (45)

Note that boundedness checks appearing as conclusions for the exception freedom VCs
(41)–(43) also appear as hypotheses in each following VC in conjunction with the hypothesis
r ∈ [− x2

4 +x, x2

4 +1] of (41). We therefore omit these checks from the hypotheses of (42)–(45)
to improve readability.

32

 1

 10

 100

 1000

 10000

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

precision

degree 0
degree 1
degree 2
degree 3
degree 4
degree 5
degree 6
degree 7
degree 8

optimal

(a) The effect of FP precision on proving time, for different polynomial degrees.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5 6 7 8

c
o

m
p

u
te

d
 s

u
b

-p
ro

b
le

m
s

degree

precision 6
precision 8

precision 10
precision 12
precision 14
precision 16
precision 18
precision 20
precision 22
precision 24

(b) The effect of polynomial degree on the number of computed sub-problems, for different FP precisions.

Fig. 12: Performance of PolyPaver depending on polynomial degree and problem tightness.
Proving VC (45) derived from the sqrt program with various FP precisions. The higher is
the precision, the tighter is the VC.

33

5.2.4 Proof

Solving was performed for values of x in [0.5, 2] and values of r in [0, 3]. PolyPaver suc-
cessfully discharged (39)–(44) in well under a second using degree 0 intervals. Using higher
degrees decided (39), corresponding to computation from start to the loop invariant, without
performing splitting and slightly outperforming solving with constant intervals. Affine in-
tervals did show consistently lower solving times for (41)–(43), however the difference was
within measurement error. With the exception of (45), the remaining cases showed higher
degrees leading to monotonically increasing solving times, which was expected from rea-
soning analogous to that in Section 5.1.2.

The remaining VC (45), corresponding to computation from the loop invariant to termina-
tion, is the one requiring the most from the approximations used in PolyPaver. It states that
on exit from the loop, i. e. when the loop action makes a negligible change to the value of r,
the value is very near

√
x. This statement is formalised in the postcondition constraint and

we expected its proof to show the most benefits of using higher degrees.

Solving with degree 0 intervals either timed out after several hours, or given 24 hour timeout
ran out of memory. To obtain data for analysis we simulated lower precision FP types by
increasing εrel to reflect a smaller mantissa bit size than the 23 bits of single precision IEEE-
754 FP numbers. Proofs were attempted for precisions 6 to 23 and degrees 0 to 8 and the
results for the highest and even and precisions are summarised in Figures 12a and 12b.
The missing data points in the graphs denote that the proof was terminated prematurely as
subdivision had generated a domain box with intervals whose endpoints are double precision
FP neighbours.

Figure 12a shows the graphs of solving time, as a function of FP precision, for each de-
gree. The final graph, labelled “optimal”, chooses the minimum solving time for the given
precision. Clearly, it is possible to choose a positive degree for each precision for which
PolyPaver performs better than when using constant intervals. This validates our expec-
tations that the (45) requires very precise approximation and that higher degrees give an
overall benefit to the prover algorithm. The improvement in solving time is due to the ability
of higher-degree enclosures to decide the VC over larger sub-domains, leading to less split-
ting and thus less computation. Since the additional cost of computing with higher-degree
polynomials is lesser than the exponential cost of splitting, the overall performance was
improved.

Figure 12b shows the number of computed sub-problems for each precision, as a function
of degree. Since this number is proportional to the space complexity of the proof, the graph
gives a picture of the asymptotic cost of precision and the ability of higher degree enclo-
sures to mitigate it. We see that, for each precision, using higher degrees leads to signifi-
cantly smaller numbers of sub-problems, with improvements ranging between one and three
orders of magnitude. As precision is increased, higher degrees are required for successful
completion of the proof, with the full 23 bit precision proof only succeeding when using
degree 8 enclosures.

34

5.3 Verification of erfRiemann

Here we return to the program given in Figure 1 in Section 1. To be able to apply Poly-
Paver on this program, we need to supply a loop invariant and determine domains for its
parameters. These are shown in the version of the program in Figure 13.

The padding by (n + 1) · δ around the model error terms in the right-hand-side of the post-
condition is used to model the accumulation of rounding errors with increasing n. To control
the tightness of the constraint, we scale the padding with a small positive δ. The minimum δ
for which the contract holds depends on the precision of the FP format used to execute the
program.

� �
1 - - This procedure computes an upper Riemann sum of the error function

2 - - scaled by sqrt(pi)/2, using a uniform partition of size n.

3 procedure erfRiemann(in x ∈ F; in n ∈ N; out r ∈ F)
4 pre x ∈ [0, 4], n ∈ [1, 100]
5 post

(
r −

∫ x

0
e−t2 dt

)
∈

[
− (n + 1) · δ , (1 − e−x2

)x/n + (n + 1) · δ
]

6 - - a bound on the total model and rounding errors

7 is
8 s ∈ F - - size of one segment in the partition

9 i ∈ N - - number of the current segment, starting from 0

10 y ∈ F - - the starting point of the current segment

11 begin
12 s := x � n; - - the integration range is 0..x

13 r := 0; - - initialise the accumulator of the Riemann sum

14 i := 0; - - start with the first segment

15 while i < n do - - iterate over segments

16 y := i ~ s; - - calculate the current segment starting point

17 - - a loop invariant to facilitate induction and to bound local variables:

18 assert
(
r −

∫ y

0
e−t2 dt

)
∈

[
− (i + 1) · δ , (1 − e−(ix/n)2

)x/n + (i + 1) · δ
]

19 and r ∈ [−10, 100] and i ∈ [0, n − 1];
20 r := r ⊕ (s ~ exp(-(y ~ y))); - - add an upper volume for this segment

21 i := i + 1;
22 od
23 end� �

Fig. 13: Implementation of the error function using a Riemann sum.

The loop invariant includes a version of the postcondition where n is replaced by i and x by
y in one instance and by ix/n in another. The remainder of the loop invariant specifies ranges
for the local variables as PolyPaver cannot determine them automatically.

Verifying this program entailed proving 19 VCs. Only two of these VCs are not proved
within one second, namely those associated with the path from the loop invariant around the
loop back to itself and the path that leads from the loop invariant to the end of the program.

35

The relevant parts of these VCs are the following:(
r −

∫ (x�n)~i
0 e−t2

dt
)
∈

[
− (δ(i + 1)), (1 − e−(xi/n)2

) x
n + δ(i + 1)

]
=⇒(
r ⊕ x � n ~ (exp(−i ~ (x � n) ~ i ~ (x � n))) −

∫ (x�n)~(i+1)
0 e−t2

dt
)

∈
[
− (δ(i + 2)), (1 − e−(x(i+1)/n)2

)x/n + δ(i + 2)
]

∧

r ⊕ x � n ~ (exp(−i ~ (x � n) ~ i ~ (x � n))) ∈ [−10, 100].

(46)

With δ = 0.1, PolyPaver took less than 2 hours to prove the second conclusion in the
above VC and it took less than 2 days to prove the first one, after splitting the domain
into 2,670,879 boxes.

5.4 Selected ProVal verified programs

We borrow two examples from the ProVal project[31] to facilitate a comparison of our verifi-
cation method with theirs. Figure 14 shows an adapted source code of the example programs.
These two examples are among three of the most complex verified FP programs published
on the ProVal portal. The third one is concerned with very precise details of rounding (the
Veltkamp/Dekker algorithm for computing the exact error of FP multiplication) and thus is
a very different kind of problem than those we target.

Both original programs can be verified automatically using a combination of the Why VC
generator, the Gappa prover and the Coq interval tactic. Our version has fewer auxiliary an-
notations, while still featuring the main postconditions. Using our method we get 4 VCs for
proval_cosine and 28 VCs for proval_sqrt. PolyPaver proves each of the 4 proval_cosine
VCs in less than 1s. We have thus shown that our annotation method and PolyPaver can
automatically verify a cleaner, more readable and easier to produce version of a ProVal
program.

Among the 28 VCs for proval_sqrt, PolyPaver proves all but three of these VCs within
2s. After some simplification, the hardest four VCs are show below, all featuring the two
variables x ∈ [1/2, 2] and r ∈ [1/2, 3/2].

|r − 1/
√

x| <= 2−6/
√

x =⇒
∣∣∣∣r � 2 ~

(
3 	 x ~ r ~ r

)
− 1/

√
x

∣∣∣∣ <= 2−11/
√

x (sqrt-1)

|r − 1/
√

x| <= 2−11/
√

x =⇒
∣∣∣∣r � 2 ~

(
3 	 x ~ r ~ r

)
− 1/

√
x

∣∣∣∣ <= 2−21/
√

x (sqrt-2)

|r − 1/
√

x| <= 2−21/
√

x =⇒
∣∣∣∣r � 2 ~

(
3 	 x ~ r ~ r

)
− 1/

√
x

∣∣∣∣ <= 2−41/
√

x (sqrt-3)

|r − 1/
√

x| <= 2−41/
√

x =⇒ |x ~ r −
√

x| <= 2−43/
√

x (sqrt-4)

PolyPaver proves sqrt-1 in less than 2s but runs out of time when attempting to decide the
other three statements. It is not feasible for PolyPaver to decide these statements because
the supporting sets where the hypothesis and conclusion hold are both very thin. In order
to prove that one is inside the other the domain has to be split finely enough so that the
boundaries of the boxes separate the two thin sets. An improved arithmetic such as ours
cannot prevent this kind of splitting. In the case of sqrt-2 the minimal depth of the tree of
split boxes is over 22, requiring approximately 222 boxes to be investigated. The actual depth

36� �
1 procedure proval_cosine(in x ∈ F; out r ∈ F)
2 pre |x| ≤ 2−5 + 2−20 -- x is not far from 0
3 post |r − cos(x)| ≤ 2−24 -- r is very close to cos(x)
4 is
5 begin
6 r := 1.0 	 x ~ x ~ 0.5; -- a Taylor expansion for cos(x)
7 end� �� �
1 procedure proval_sqrt(in x ∈ F; out r ∈ F)
2 pre 0.5 ≤ x ≤ 2 -- x is not far from 1
3 post |r −

√
x| ≤ 2−43 ·

√
x -- r is very close to

√
x

4 is
5 t ∈ F -- intermediate approximation of 1/

√
x

6 begin
7 sqrt_init(x, t); -- set t to a value where Newton iteration converges
8

9 t := 0.5 ~ t ~ (3 	 t ~ t ~ x); -- Newton iteration
10 assert |r − 1/

√
x| ≤ 2−11 · 1/

√
x; -- bound on total error after iteration 1

11 t := 0.5 ~ t ~ (3 	 t ~ t ~ x); -- Newton iteration
12 assert |r − 1/

√
x| ≤ 2−21 · 1/

√
x; -- bound on total error after iteration 2

13 t := 0.5 ~ t ~ (3 	 t ~ t ~ x); -- Newton iteration
14 assert |r − 1/

√
x| ≤ 2−41 · 1/

√
x; -- bound on total error after iteration 3

15

16 r := x ~ t; -- conversion 1/
√

x→
√

x
17 end
18

19 procedure sqrt_init(in x ∈ F; out r ∈ F)
20 pre 0.5 ≤ x ≤ 2 -- x is not far from 1
21 post |r − 1/

√
x| <= 2−6 · 1/

√
x -- r is close to 1/

√
x

22 ...� �
Fig. 14: Two example annotated programs from [31] translated from C to our language and
without some assertions that serve as hints to Why and Gappa but do not help PolyPaver.
The three assertions were added to break down one difficult VC into four easier ones.

is usually over 30 due to the approximation errors of the arithmetic, making an exhaustive
search over all boxes infeasible.

Among the VCs generated by the ProVal tools for the cosine example is one that is in essence
as follows:(

∀x1 ∈ [−2−4, 2−4], x2 ∈ [−2−5, 2−5]
) (

x1 − x2 ∈ [−2−20, 2−20]

=⇒
∣∣∣(1 	 (x1 ~ x1) � 2

)
− 1 + x2

2/2
∣∣∣ − |x1 − x2| ≤ 131201/241

)
.

(cosine-2)

This VC is very tight in the same way as the above square root VCs (i. e. close to being
as strong as possible). Nevertheless, it is significantly simpler than the square root VC.
PolyPaver times out on this VC in the standard mode described in this paper but it can prove
it in 10s with an experimental extension that, while splitting, rotates and skews the boxes,
ensuring coverage of the original domain while allowing for thin boxes that better fit in
the thin gaps between the supporting sets of the hypothesis and the conclusion. This VC is
representative of properties near the boundary of what our numerical proving approach can

37

manage to prove automatically in reasonable time. We believe that the best way to address
this limitation is to combine our numerical proving approach with symbolic manipulations
such as those employed in Gappa or MetiTarski.

5.5 Checking interpolated values

Next, we show how our method applies on a slightly larger example, which is shown in
Figure 15 and whose full implementation in SPARK and VCs generated by SPARK tools
are available on the PolyPaver portal[17]. It is an adaptation of code present in a commer-
cial safety-critical project. Its task is to compute a bound on the maximum of a quadratic
polynomial interpolating three consecutive data points in a time-series of non-negative FP
values with uniform time step.

For simplicity, we set the time step to 1 and thus interpolate the points (−1, y1), (0, y2),
and (1, y3), yielding the coefficients a =

y1−2y2+y3
2 , b =

y3−y1
2 , and c = y2 of the polynomial

q(x) = ax2 +bx+c. These coefficients are computed by the procedure coeffs. When there is
a critical point, the value of the polynomial at the critical point is given by c− b2

4a . This value is
computed by the procedure max quad. When a is negative, this value is the global maximum
of the polynomial. The postcondition of max quad expresses this fact, albeit restricted to
the domain [−1, 1]. The postcondition needs a universally quantified variable x. Since we do
not support explicit quantification, we had to make x a dummy program variable. Note that,
instead of a < 0, we used the stronger precondition a < −0.05 to make the VCs less tight
and feasibly provable by the current PolyPaver technique.

The procedure max unit is returns a number that is close to the maximum of the interpolated
polynomial over the unit interval [−1, 1]. One undesirable consequence of strengthening the
precondition of max quadwas the need to correspondingly strengthen the test in the body of
max unit that guards the call to max quad. This complicates the specification of max unit
because it ignores potential peaks near 0 with a ∈ [−0.05, 0]. The postcondition includes a
buffer to accommodate for the peaks that the program ignores, effectively providing a bound
on how high such peaks could be. The postcondition is also somewhat weakened so that the
VCs are sufficiently loose to be proved by PolyPaver in a reasonable time. There were only
3 non-trivial VCs. The hardest VC has 8 variables and PolyPaver proved it in around 10min
after splitting the domain into 507911 segments.

All exception freedom VCs were trivial for PolyPaver — no splitting was required to prove
them with degree 0. If we are interested in exception freedom only, we can drop all postcon-
ditions from the program except those that give explicit numerical ranges for output values.

Having verified this specification, we attempted to verify a tighter specification. While we
were not successful in this goal, PolyPaver was still useful in discovering subtle errors in
our attempts at a much tighter specification such as swapped polynomial coefficients or an
inverted branching condition. When it disproved a specification, it provided a counterexam-
ple in the form of values for the parameters for which the buggy program deviates from the
specification. Thus we have experienced PolyPaver as an effective tool for early detection
of numerical programming bugs that are outside the scope of other currently available static
analyses.

38� �
1 -- Compute an upper bound over x ∈ [−1, 1] for the quadratic polynomial
2 -- that interpolates the points given by the values y1, y2, y3 for x = −1, 0, 1, respectively.
3 procedure max_unit(in y1, y2, y3 ∈ F; out r ∈ F)
4 pre y1, y2, y3 ∈ [0, 1] -- a range restriction on the input points
5 post r ≥ y1 − 0.2 ∧ r ≥ y2 − 0.2 ∧ r ≥ y3 − 0.2
6 -- the result (almost) dominates the given points

7 is
8 a, b, c,m1,m2 ∈ F -- coefficients of the quadratic polynomial and intermetiate maxima
9 begin

10 max(y1,y3,m1); -- i. e. m1 = max(y1, y3)
11 coeffs(y1,y2,y3,a,b,c); -- quadratic polynomial interpolation
12 if a < −0.05 ∧ 2.0 ~ a ≤ b ∧ b ≤ −2.0 ~ a then -- is a maximum inside [−1, 1]?
13 max_quad(a,b,c,0.0,m2); -- compute the maximum of the polynomial inside [−1, 1]
14 max(m1,m2,r); -- ensure the result not below y1 and y2

15 else
16 r := m1; -- the maximum is close to −1 or 1
17 fi;
18 end� �� �

1 -- Compute the coefficients of a quadratic polynomial that interpolates

2 -- the three points given by y1, y2, y3 for x = −1, 0, 1, respectively.
3 procedure coeffs(in y1, y2, y3 ∈ F; out a, b, c ∈ F)
4 pre y1, y2, y3 ∈ [0, 1] -- a range restriction on the input points
5 post a − b + c − y1 ∈ [−10−6, 10−6] ∧ -- the polynomial is near point 1

6 c = y2 ∧ -- the polynomial is near point 2

7 a + b + c − y3 ∈ [−10−6, 10−6] ∧ -- the polynomial is near point 3

8 a ∈ [−1.1, 1.1] ∧ b ∈ [−1.1, 1.1] ∧ c ∈ [−1.1, 1.1] -- the coefficients fit in [−1.1, 1.1]
9 is

10 begin
11 -- the following formulas are obtained by solving a simple linear system:

12 a := 0.5 ~ (y1 	 2.0 ~ y2 ⊕ y3);
13 b := 0.5 ~ (y3 	 y1);
14 c := y2;

15 end� �� �
1 -- Compute an upper bound on a quadratic polynomial with the given coefficients

2 -- over the interval [−1, 1], assuming the polynomial is convex upward.
3 -- The parameter x is used only to formulate the postcondition. It’s value is irrelevant.
4 procedure max_quad(in a, b, c, x ∈ F; out r ∈ F)
5 pre a ∈ [−1.2,−0.05] ∧ b ∈ [−1.2, 1.2] ∧ c ∈ [−1.2, 1.2] ∧
6 x ∈ [−1, 1]
7 post r ≥ ax2 + bx + c − 0.05 ∧ -- r (almost) dominates the polynomial for any x ∈ [−1, 1]
8 r ≤ 10 -- a bound on r following from the bounds on the coefficients
9 is

10 begin
11 r := c 	 0.25 ~ b ~ b � a; -- = c − b2/4a, i. e. the value at point x = −b/2a
12 end� �� �

1 procedure max(in x, y ∈ F; out r ∈ F)
2 post (r = x ∧ x ≥ y) ∨ (r = y ∧ y ≥ x) -- r is the larger one among x and y
3 ...� �

Fig. 15: A procedure computing the maximum of a quadratic interpolation of three points

39

6 Comparison with other numerical provers

In the previous section there are examples for which PolyPaver proves non-linear error
bounds for numerical programs, in some cases fairly tight ones. PolyPaver and our method
of deriving verification conditions match in several aspects. Nevertheless, in many cases it is
possible to apply other automated theorem provers on the verification conditions generated
by our method, sometimes with some level of symbolic manipulation to circumvent the lim-
itations of various provers. The goal of this section is to compare PolyPaver with RealPaver
0.4, RSolver 3.01, Gappa 0.14.1 and MetiTarski 1.9 in terms of ability to prove numerical
theorems, in particular theorems arising as VCs for numerical programs using our method or
other similar methods. Subsection 6.1 reports on how the provers compare when solving one
of the hardest VCs encountered in Section 5. To enable comparison on a numerical scale,
Subsection 6.2 reports on solving some parametrised benchmark problems that do not arise
as VCs.

RealPaver [23] is similar to PolyPaver in its basic concept but uses plain interval arithmetic
together with an array of interval computation and constraint propagation techniques. Re-
alPaver’s expression language features a limited set of real functions and has no explicit
interval operators. The same is true for RSolver, Gappa and MetiTarski, but the set of real
functions is different for each prover. Moreover, RealPaver formulae are limited to conjunc-
tions of inequalities over real expressions.

RealPaver computes outer approximations of the set of solutions of a given constraint sys-
tem, i. e. a union of boxes containing the solution set. For our purposes we need to know that
a theorem is true everywhere in its domain and therefore apply RealPaver to the negation
of the theorem. If an empty outer approximation is computed, it has been proved that the
negation completely lacks solutions, or equivalently, that the theorem is true over the entire
domain.

RSolver[34] is also similar to PolyPaver in its basic concept but its focus is on proving
first-order formulae with existential and universal quantifiers.

Gappa[10] uses a combination of symbolic and numerical proving, treating interval evalu-
ation and domain splitting as some of the available proof rules. It natively supports the FP
rounding operator but is poor on common numerical functions, covering only field opera-
tions and the square root.

MetiTarski[3] also uses a combination of symbolic and numerical proving, but its numerical
axiom base includes a fixed selection of tight polynomial and rational approximations of
elementary functions. It is therefore quite different from the other provers in that it does not
perform any interval evaluation. On the other hand, it is similar to PolyPaver in its use of
tight polynomial bounds for numerical expressions that appear in theorems.

6.1 Square root VC

The first property we benchmark the provers on is the VC in equation (45) on page 31. Due
to the lack of support for interval literals in the provers, we had the choice of either

40

1. eliminating interval literals symbolically by translating an interval expression to a pair
of bounds, leading us to translate problem (45) to:(

− x2

4 + x ≤ r ∧ r ≤ x2

4 + 1 ∧ L ≤ r ∧ r ≤ R
)

=⇒(
(1 − 4εrel)

√
x ≤ L ∧ R ≤ (1 + 4εrel)

√
x
)

where
L = (1 − εrel) 1

2

(
(1 − εrel)

(
r +

(
(1 − εrel) x

r − εabs
))
− εabs

)
− εabs

R = (1 + εrel) 1
2

(
(1 + εrel)

(
r +

(
(1 + εrel) x

r + εabs
))

+ εabs

)
+ εabs

εrel = 2−23 εabs = 2−126

(47)

2. or replacing each occurrence of an interval literal with a fresh variable whose bounds
correspond to the interval endpoints, leading us to translate problem (45) to:(

− x2

4 + x ≤ r ∧ r ≤ x2

4 + 1 ∧ r = E
)

=⇒(
(1 − 4εrel)

√
x ≤ E ∧ E ≤ (1 + 4εrel)

√
x
)

where
E = (1 + εr3) 1

2

(
(1 + εr2)

(
r +

(
(1 + εr1) x

r + εa1
))

+ εa2

)
+ εa3

εr1, εr2, εr3 ∈ [−εrel, εrel] εa1, εa2, εa3 ∈ [−εabs, εabs]

(48)

The issue with choice 1 is that this translation is generally nontrivial and difficult to auto-
mate. The translation involves monotonicity analysis and when the operators in the expres-
sions are not monotone, the number of cases to consider grows exponentially with expres-
sion size. In our example we were lucky because all functions involved are monotone over
the given domain. (An expression for which the number of cases grows can be found in
[18].) The issue with choice 2 is that the dimension of the problem domain increases con-
siderably, normally leading to an exponential slowdown. If we could tell the provers not to
split the domain of the newly introduced variables, the splittable domain dimension would
stay unchanged and we could make a better comparison. Unfortunately, only RSolver gives
such an option. However, as RSolver does not support the square root we cannot apply it to
this problem.

As stated earlier, the RealPaver theorem language also lacks disjunction and implication and
thus we have to modify the problems further for RealPaver. The solution pointed to in the
RealPaver manual is to use the minimum function as follows:

a ≤ b ∨ c ≤ d ⇔ min(a − b, c − d) ≤ 0.

Also having to negate the original VC (45), we end up giving RealPaver the following prob-
lem when using choice 1

r ≥ − x2

4 + x ∧ r ≤ x2

4 + 1 ∧ r ≥ L ∧ r ≤ R ∧

min
(
R − (1 − 4εrel)

√
x, (1 + 4εrel)

√
x − L

)
≤ 0

(49)

for x ∈ [0.5, 2] and r ∈ [0, 3], and using choice 2:

r ≥ − x2

4 + x ∧ r ≤ x2

4 + 1 ∧ r = E ∧

min
(
E − (1 − 4εrel)

√
x, (1 + 4εrel)

√
x − E

)
≤ 0

(50)

for x ∈ [0.5, 2], r ∈ [0, 3], εr1, εr2, εr3 ∈ [−εrel, εrel], and εa1, εa2, εa3 ∈ [−εabs, εabs].

41

 0.01

 0.1

 1

 10

 100

 1000

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
o
lv

in
g
 t
im

e
 (

s
e
c
o
n
d
s
)

precision

PolyPaver degree 8
PolyPaver optimal

RealPaver intervals
RealPaver inequalities
MetiTarski inequalities

Fig. 16: The effect of FP precision (mantissa bitsize) on proving times for a translation of
problem (45) by various provers.

Figure 16 shows how well the three provers that we could apply on the VC did. On the 2-
variable translation (47) MetiTarski clearly wins for higher precisions, probably because it
has a good enough bound for square root and all other necessary rules to solve the problem
using more or less the same proof irrespective of precision up to a certain, fairly high preci-
sion. RealPaver also outperforms PolyPaver in this test. Nevertheless, the inequality-based
approach to expressing inclusions used to obtain (47) does not scale well when the functions
are not monotone on the domain of interest. Using the 8-variable translation (48), which is
easier to obtain, RealPaver was clearly lagging behind PolyPaver and MetiTarski gave up
even for precision 6.

6.2 Parametrised numerical benchmarks

For the purpose of further comparing the performance of the provers, we use two families
of benchmarks parametrised by dimension and tightness. As such benchmarks, we chose
familiar identities between real expressions that are invariant under permutation of vari-
ables, yielding benchmarks that scale uniformly with dimension. Then, the chosen identity
is turned into an inequality and one of the expressions is shifted by a small distance, sep-
arating the identical surfaces given by the syntactically distinct but functionally equivalent
expressions. The distance controls the tightness of the inequality.

42

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

p

PolyPaver degree 3
RealPaver
MetiTarski

(a) The effect of 2D exponential benchmark tightness on solving time for different provers.

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

p

PolyPaver degree 3
RealPaver
MetiTarski

(b) The effect of 3D exponential benchmark tightness on solving time for different provers.

Fig. 17: Solving times of the provers on the benchmark problems ϕexp
2,p in (a) and ϕexp

3,p in (b).
Any missing data points correspond to solving time exceeding 1 hour. Graphs show how
long it took to prove a problem as a function of its p parameter.

43

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

p

PolyPaver degree 2
MetiTarski
RealPaver

(a) The effect of 2D square root benchmark tightness on solving time for different provers.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

p

PolyPaver degree 2
RealPaver
MetiTarski

(b) The effect of 3D square root benchmark tightness on solving time for different provers.

Fig. 18: Solving times of the provers on the benchmark problems ϕsqrt
2,p in (a) and ϕsqrt

3,p in (b).
Any missing data points correspond to solving time exceeding 1 hour. Graphs show how
long it took to prove a problem as a function of its p parameter.

44

Formally, these benchmarks are given by real predicates ϕexp
d,p , ϕsqrt

d,p , parametrised by natural
numbers d, p ∈ N, with d ≥ 1, defined below.

ϕ
exp
d,p ≡ ∀x1, . . . , xd ∈ [0, 1] :

d∏
i=1

exi < 2−p + e
∑d

i=1 xi (51)

ϕ
sqrt
d,p ≡ ∀x1, . . . , xd ∈ [1, 2] :

√√√ d∏
i=1

xi < 2−p +

d∏
i=1

√
xi (52)

RSolver and Gappa were unable to prove these properties even for d = 2, p = 0. The timings
for RealPaver, MetiTarski, and PolyPaver are shown in Figures 17 and 18 for benchmark (51)
and (52), respectively.

MetiTarski does not score well in these tests because it relies on a finite set of axioms,
mainly polynomial bounds, that suffice to prove properties only up to a certain precision.
If the two identities that are embedded in these properties would be among MetiTarski’s
axioms, MetiTarski would certainly outperform the other provers. This illustrates the fact
that it is hard to engineer a set of axioms that do not overwhelm the reasoning engine with
too much choice and also cover most problems in the target application domain.

As both PolyPaver and RealPaver are based on domain subdivision, they necessarily suf-
fer from an exponential cost in the number of variables in a given theorem. (MetiTarski is
sensitive to the number of variables even more due to using QEPCAD-B to compare poly-
nomials.) Thus, the dimension parameter d allows for a uniform scaling of the toughness of
a proof as a function of dimension. Both these provers decide inequalities by finding boxes
separating the surfaces given by the expressions in the relation. Thus, the precision param-
eter p allows for a uniform scaling of the toughness of a proof as a function of tightness.
In these benchmarks PolyPaver outperforms RealPaver on tighter problems and RealPaver
outperforms PolyPaver on looser problems. It is also worth noting the complicated and less
predicable behaviour of RealPaver, which we attribute to the number and complexity of the
different techniques inside it. PolyPaver, on the other hand, is relatively simple and pre-
dictable.

7 Scalability

To study the current limits of our method, we conducted tests on randomly generated pro-
grams and specifications. Each of the programs is a single FP expression built using variables
and binary operators. The derived specification is a tight functional specification that links
the values of the FP expression with the intended exact interpretation of the expression.

In each test, the generated expressions increase in size or complexity in some way. We focus
our study on the impact of each of the following parameters:

– Expression dimension, i. e. the number of free variables
– Expression depth, i. e. the length of the longest chain of nested operations
– Expression size, i. e. the overall number of binary operations

45

Another parameter that strongly impacts the performance of PolyPaver is the specification
tightness. We study the impact of changing tightness in Subsection 6.2. Here we only con-
duct a small number of tightness tests to determine a reasonable tightness to use in the
remaining tests.

7.1 Benchmark generation

While random generation of expressions is simple, it is highly nontrivial to randomly gener-
ate tight specifications for the generated programs, which have a good chance of being both
correct and feasibly provable. To keep the task manageable, we generate single-expression
programs. An analogous investigation of a richer class of programs is beyond the scope of
this work.

In summary, a specification for an expression is generated by sampling various tuples of
input values and executing the program in different precision arithmetics, from which an
estimate of the actual absolute error of the program is obtained. We could try to prove that
the estimate is a correct error bound, but it is very unlikely that this would be true. Instead,
we scale the estimate by a tightness parameter and then try to prove that this is a correct
error bound.

The parameters for generating an expression are its arity n, its depth d and whether the
expression should be a balanced binary tree such as ((y ∗ x) + (y + z)) ∗ ((x + x) + (y + z))
(depth 3), or a deep non-branching binary tree such as x + (y∗ (z + (x ∗ z))) (depth 4). Further
parameters τ > 1 and N ∈ N will be introduced later.

An expression e is obtained by random sampling of variables and binary operations while
constructing a tree of the selected shape and size. The variables are drawn from the set
{x1, . . . , xn}. We take care to exclude expressions where some variable happens not to occur,
to guarantee that the expression will have the specified arity. Binary operations are drawn
from the set comprising the operations x + y, x − y, x ∗ y,

√
1 + x2 + y2. Note that these real

operations are total and relatively stable.

The idealised meaning [[e]]R of an expression e is defined by interpreting the values of the
variables as real numbers and operations as real functions. The actual meaning [[e]]F of e
is obtained by interpreting the values of variables as values in the FP format F, and the
operations as rounded to fit into F.

The specification for a program obtained from expression e with free variables x1, . . . , xn is

x1 ∈ [−1, 1], . . . , xn ∈ [−1, 1]⇒ [[e]]F ∈ [[e]]R + τ · [−δ, δ]

where τ > 1 is the tightness parameter, δ = max{|δ1|, . . . , |δN |} and each value δi is obtained
using the following steps:

1. Select a random tuple v of FP values in [−1, 1]n.
2. Estimate [[e]]R (v) by evaluating e in v using a very high precision interval arithmetic.
3. Evaluate [[e]]F (v) using ordinary single-precision FP arithmetic.
4. Set δi = [[e]]R − [[e]]F.

46

7.2 Tests

We set N = 1000 and calibrated the tightness τ by running a sample of verification problems
with 16 operations for τ = 10, 100, 1000, 10000. We chose the value τ = 1000 because it
was the least value that led to good results.

We ran three sets of tests according to the three parameters outlined earlier, namely expres-
sion arity, depth, and number of operations. The other parameters were set as follows:

– Arity tests: balanced expressions with 16 operations.
– Size tests: balanced expressions of arity 2.
– Depth tests: deep non-branching expressions of arity 2.

Each test was run for 20 randomly generated programs. The timeout was set to 10 hours.
PolyPaver was executed single-threaded on an Intel i7-2600 3.40GHz machine with 16GB
RAM and 8MB cache per core, running Kubuntu 12.04.

7.3 Analysis

Figure 19 shows the outcome of our three tests, organised in three groups of two plots. The
plots on the left show the proportions of different types of overall result. The result “stopped”
means that the prover has reached a bisection depth beyond a threshold of 1000 or the depth-
first queue reached a threshold of 50, implying that the proof, if successful could take over
a year to complete. The plots on the right show averages and standard deviations of proof
durations for those programs that were successfully proved.

We conjecture that in a majority of the cases where the prover stopped, the chosen tightness
was too high for PolyPaver. When the same happens in practice, the programmer loosens
the specification until PolyPaver succeeds in reasonable time.

As may be observed from Figure 19, we found that arity matters most and that PolyPaver
can effectively verify most of the generated programs with arity two. This is the reason why
we chose to fix arity at two for the other tests.

We set the timeout to ten hours and determined sizes for which reasonably few timeouts
occurred. The duration data for tests with many timeouts is distorted by the fact that a sig-
nificant proportion of the problems that could be proved are missing because their proof
takes too long. This fact is clearly indicated in the plots where this applies.

The results seem to indicate that proving duration is close to linear in the size of the program.
A larger sample size and much longer timeout would be needed to substantiate a confident
verdict.

We conclude that arity is the biggest bottleneck. As expected, the proof duration is approxi-
mately exponential in the program arity. This is in line with results reported by all other tools
based on subdivision, which is currently the dominating approach in automated non-linear
real-number theorem proving.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4

fr
a

c
ti
o

n

arity

small branching expressions

proved

timeout

stopped

(a) Impact of arity on result (b) Impact of arity on proof duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

fr
a

c
ti
o

n

operations

non-branching expressions

proved

stopped

timeout

(c) Impact of size on result (d) Impact of size on proof duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

fr
a

c
ti
o

n

operations

balanced expressions

proved

timeout

stopped

(e) Impact of size on result (f) Impact of size on proof duration

Fig. 19: Impact of expression complexity on proof success rate and effort. The annotation
“distorted by timeouts” indicates that the true average duration in the annotated region is
likely to be substantially higher than the experiments show. In (a), (c) and (e) the impact on
the proportion of different results and in (b), (d) and (f) the impact on duration of successful
proofs are shown for balanced expressions with 16 operations and given arity, for deep ex-
pressions with given number of operations and for balanced expressions with given number
of operations, respectively. The duration plots are centred around the average duration and
their widths indicate the standard deviation of the duration.

48

8 Conclusion

We have given a formal account of the main concepts behind our numerical theorem prover
PolyPaver, which is based on a novel polynomial interval arithmetic that automatically com-
putes tight polynomial bounds for expressions.

While PolyPaver can be applied in various contexts, it was developed with verification of
floating-point programs in mind. We showed that PolyPaver can facilitate an automatic ver-
ification of floating-point programs against tight functional specifications with the integral
operator and interval inclusions. The ability to naturally deal with the integral operator and
interval expressions and inclusions is unique to PolyPaver.

While being relatively simple and implemented in a high-level functional language with no
focus on optimisation, PolyPaver performs comparably to other published state-of-the-art
numerical provers.

Our experiments demonstrate that higher-degree polynomial intervals can significantly out-
perform lower-degree polynomials, such as affine and constant interval forms, when used to
approximate numerical expressions in subdivision-based numerical constraint solving.

Finally, we have probed the extent to which PolyPaver scales to larger problems using
randomly generated program-specification pairs of various sizes. It appears that PolyPaver
scales well with the size of program but not well with the number of variables in the pro-
gram. Other published non-linear numerical theorem provers and solvers also do not scale
well with the number of variables.

PolyPaver, as described here and with extensions not mentioned here, is BSD-licensed and
its sources available on its development portal at [17].

8.1 Further work

Improved automation. The parameters of PolyPaver, such as polynomial degree and split-
ting bounds, need to be set manually or scripted in a problem-dependent way. In order to
fully automate the solving process, we need to develop heuristics for setting these parame-
ters. This includes automatically finding close-to-optimal degrees and other effort indicators
in a problem- or even box-dependant manner.

Improved power. Our solver does not support quantification, which is essential for express-
ing and proving properties of programs with arrays. The work of Ratschan [33,34] on first
order numerical constraint solving and Fränzle et al. [21] on integrating SMT and NCSP
solvers provide a direction, in which we plan to extend our approach so that it can handle
programs with arrays.

Combination with symbolic reasoning. We believe that the power of PolyPaver will be best
utilised in combination with automated or interactive symbolic proving techniques. The
symbolic provers can supply what PolyPaver lacks, such as ability to prove equalities and
touching inequalities, and automatic problem decomposition. PolyPaver can aid symbolic
provers by identifying counter-examples to false statements, quickly rating sub-problems in
terms of their likely validity and tightness and prove small but hard non-linear inequalities.

49

One starting point of our future work will be to symbolically pre-process theorems to remove
as much unnecessary touching as can feasibly be done.

We foresee that an integration with an SMT solver will help us not only to deal with quanti-
fiers as mentioned earlier but also to eliminate many simple cases of touching.

Another possible avenue for combining the main aspects of our method with symbolic rea-
soning is to act as an oracle for MetiTarski to provide further polynomial bounds on demand.

Documentation. We plan to rigorously document and formally analyse the PI arithmetic
implementation used by the solver. This will enable us to produce a soundness proof for the
solver implementation.

References

1. Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3. Ada Europe (2007). URL http://www.adaic.
org/standards/05rm/html/RM-TTL.html

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables, ninth dover printing, tenth gpo printing edn. Dover, New York (1964)

3. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions.
J. Autom. Reasoning 44(3), 175–205 (2010)

4. Amey, P.: Correctness by construction: Better can also be cheaper. CrossTalk Magazine pp. 24–28 (2002)
5. Barnes, J.: The spark way to correctness is via abstraction. Ada Lett. XX(4), 69–79 (2000). DOI

http://doi.acm.org/10.1145/369264.369271
6. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security, 2 edn. Addison-

Wesley (2003)
7. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.: Engineering the tokeneer

enclave protection software. In: Proceedings of IEEE International Symposium on Secure Software
Engineering (2006)

8. Boldo, S.: Floats & Ropes: a case study for formal numerical program verification. In: 36th International
Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science - ARCoSS,
vol. 5556, pp. 91–102. Springer, Rhodos, Greece (2009)

9. Boldo, S.: How to compute the area of a triangle: a formal revisit. In: Proceedings of the 21th IEEE
Symposium on Computer Arithmetic. Austin, Texas, USA (2013). URL http://hal.inria.fr/
hal-00790071

10. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining coq and gappa for certifying floating-point pro-
grams. In: Calculemus ’09/MKM ’09: Proceedings of the 16th Symposium, 8th International Con-
ference. Held as Part of CICM ’09 on Intelligent Computer Mathematics, pp. 59–74. Springer-Verlag,
Berlin, Heidelberg (2009). DOI http://dx.doi.org/10.1007/978-3-642-02614-0 10

11. Boldo, S., Lelay, C., Melquiond, G.: Improving Real Analysis in Coq: a User-Friendly Approach to
Integrals and Derivatives. In: C. Hawblitzel, D. Miller (eds.) Proceedings of the The Second Interna-
tional Conference on Certified Programs and Proofs, Lecture Notes in Computer Science, vol. 7679, pp.
289–304. Kyoto, Japan (2012). DOI 10.1007/978-3-642-35308-6 22. URL http://hal.inria.fr/
hal-00712938

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ
analyzer. In: S. Sagiv (ed.) ESOP, Lecture Notes in Computer Science, vol. 3444, pp. 21–30. Springer
(2005)

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c: a software
analysis perspective. In: Proceedings of the 10th international conference on Software Engineering and
Formal Methods, SEFM’12, pp. 233–247. Springer-Verlag, Berlin, Heidelberg (2012). DOI 10.1007/

978-3-642-33826-7 16. URL http://dx.doi.org/10.1007/978-3-642-33826-7_16
14. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded operators. ACM

Trans. Math. Softw. 37(1), 1–20 (2010). DOI http://doi.acm.org/10.1145/1644001.1644003
15. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of

fluctuat on safety-critical avionics software. In: Proceedings of the 14th International Workshop on For-
mal Methods for Industrial Critical Systems, FMICS ’09, pp. 53–69. Springer-Verlag, Berlin, Heidelberg
(2009)

http://www.adaic.org/standards/05rm/html/RM-TTL.html
http://www.adaic.org/standards/05rm/html/RM-TTL.html
http://hal.inria.fr/hal-00790071
http://hal.inria.fr/hal-00790071
http://hal.inria.fr/hal-00712938
http://hal.inria.fr/hal-00712938
http://dx.doi.org/10.1007/978-3-642-33826-7_16

50

16. Duracz, J.: Verification of floatin point programs. Ph.D. thesis, Aston University (2010)
17. Duracz, J., Konečný, M.: PolyPaver development portal. http://code.google.com/p/polypaver/.

Last accessed on 28th April 2013
18. Duracz, J.A., Farjudian, A., Konečný, M.: Enclosure constraints for floating point software verification.

In: Proceedings of CFV 2009 in Grenoble (2009)
19. Duracz, J.A., Konečný, M.: Polynomial function enclosures and floating point software verication. In:

Proceedings of CFV 2008 in Sydney, pp. 56–67 (2008)
20. Filliâtre, J.C., Paskevich, A.: Why3 – Where Programs Meet Provers. In: ESOP’13 22nd European

Symposium on Programming, LNCS, vol. 7792. Springer, Rome, Italie (2013). URL http://hal.
inria.fr/hal-00789533

21. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arith-
metic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling
and Computation 1, 209–236 (2007)

22. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: K. Yi (ed.) SAS, Lecture Notes in
Computer Science, vol. 4134, pp. 18–34. Springer (2006)

23. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: An interval solver using constraint satisfac-
tion techniques. ACM Transactions on Mathematical Software 32(1) (2006). URL http://www.lina.
sciences.univ-nantes.fr/Publications/2006/GB06

24. Kaucher, E.: Interval analysis in the extended interval space ir. Computing, Suppl. 2, 33–49 (1980)
25. Makino, K., Berz, M.: Efficient control of the dependency problem based on taylor model methods. Re-

liable Computing 5, 3–12(10) (February 1999). URL http://www.ingentaconnect.com/content/
klu/reom/1999/00000005/00000001/00204749

26. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press (2002)
27. Neher, M., Jackson, K.R., Nedialkov, N.S.: On taylor model based integration of odes. SIAM J. Numer.

Anal. 45(1), 236–262 (2007). DOI http://dx.doi.org/10.1137/050638448
28. Neumaier, A.: Taylor forms–use and limits. Reliable Computing 9(1), 43–79 (2003)
29. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA (1999)
30. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A prototype verification system. In: D. Kapur (ed.) 11th

International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence, vol.
607, pp. 748–752. Springer-Verlag, Saratoga, NY (1992). URL http://www.csl.sri.com/papers/
cade92-pvs/

31. ProVal team: Proval web portal. http://proval.lri.fr/index.en.html. Last accessed on 1st
September 2011

32. Putot, S., Goubault, E., Martel, M.: Static analysis-based validation of floating-point computations.
LNCS 2991, 306–313 (2004). URL http://www.springeronline.com/3-540-21260-4

33. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Transac-
tions on Computational Logic 7(4), 723–748 (2006)

34. Ratschan, S., et al.: RSolver. http://rsolver.sourceforge.net (2004). Software Package

http://code.google.com/p/polypaver/
http://hal.inria.fr/hal-00789533
http://hal.inria.fr/hal-00789533
http://www.lina.sciences.univ-nantes.fr/Publications/2006/GB06
http://www.lina.sciences.univ-nantes.fr/Publications/2006/GB06
http://www.ingentaconnect.com/content/klu/reom/1999/00000005/00000001/00204749
http://www.ingentaconnect.com/content/klu/reom/1999/00000005/00000001/00204749
http://www.csl.sri.com/papers/cade92-pvs/
http://www.csl.sri.com/papers/cade92-pvs/
http://proval.lri.fr/index.en.html
http://www.springeronline.com/3-540-21260-4

	Introduction
	Background
	Polynomial Interval Arithmetic
	Numerical Prover Algorithm
	Examples
	Comparison with other numerical provers
	Scalability
	Conclusion

