
Proving Tight Bounds on Univariate Expressions with

Elementary Functions in Coq

Érik Martin-Dorel, Guillaume Melquiond

To cite this version:

Érik Martin-Dorel, Guillaume Melquiond. Proving Tight Bounds on Univariate Expressions
with Elementary Functions in Coq. Journal of Automated Reasoning, Springer Verlag, 2016,
57 (3), pp.187-217. <10.1007/s10817-015-9350-4>. <hal-01086460v2>

HAL Id: hal-01086460

https://hal.inria.fr/hal-01086460v2

Submitted on 14 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01086460v2

JAR manuscript No.
(will be inserted by the editor)

Proving Tight Bounds on Univariate Expressions with
Elementary Functions in Coq

Érik Martin-Dorel · Guillaume Melquiond

Received: date / Accepted: date

Abstract The verification of floating-point mathematical libraries requires computing nu-
merical bounds on approximation errors. Due to the tightness of these bounds and the pecu-
liar structure of approximation errors, such a verification is out of the reach of generic tools
such as computer algebra systems. In fact, the inherent difficulty of computing such bounds
often mandates a formal proof of them. In this paper, we present a tactic for the Coq proof
assistant that is designed to automatically and formally prove bounds on univariate expres-
sions. It is based on a formalization of floating-point and interval arithmetic, associated with
an on-the-fly computation of Taylor expansions. All the computations are performed inside
Coq’s logic, in a reflexive setting. This paper also compares our tactic with various existing
tools on a large set of examples.

Keywords Interval arithmetic · Formal proof · Decision procedure · Coq proof assistant ·
Floating-point arithmetic · Nonlinear arithmetic

1 Introduction

Libraries of mathematical functions (so called libm) are pieces of software that provide
floating-point approximations of the most common mathematical functions, e.g. exp, cos.
The use of such functions is so pervasive nowadays that the IEEE 754–2008 standard for
floating-point arithmetic gives recommendation on their accuracy. As such, it is critical that
libraries document the accuracy of the computed values, so that users of those libraries
can rely on them. In fact, some library authors go as far as publishing mathematical proofs
showing that the documented accuracy is correct.

This work was funded by the Verasco ANR project (ref. ANR-11-INSE-003). It was partly done while the
first author was with Inria Saclay–Île-de-France, in the LRI research laboratory.

Érik Martin-Dorel
Université Toulouse 3–Paul Sabatier, Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS
IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Guillaume Melquiond
Inria Saclay–Île-de-France, LRI, UMR 8623 CNRS
PCRI, bât 650, Université Paris-Sud, F-91405 Orsay Cedex, France

2 Érik Martin-Dorel, Guillaume Melquiond

For instance, if we take a look at the correctness proof for the implementation of exp in
the CRlibm library,1 we can notice that it relies on the following assumption, among others:
For any x such that |x | ≤ 355 · 2−22, we have the following bound:

�����
x + 0.5 · x2 + c3x3 + c4x4 − exp x + 1

exp x − 1

�����
≤ 2−62 (1)

with c3 = 6004799504235417 · 2−55 and c4 = 1501199876148417 · 2−55.
Verifying such an assumption by hand is extremely tedious and error-prone. So we might

first want to get a bit more insight on that property. Since the relative error it bounds is
a well-behaved univariate function of x, we could first try to plot it with some computer
algebra system: Maple, Mathematica, Matlab, and so on. Indeed, if the extremum points of
the function graph visually satisfy the property, then the assumption is most probably valid.
While not a formal proof in any way, this check would already go a long way in increasing
the confidence in the library. Unfortunately, as can be seen on Figure 1, the resulting plot
looks so fishy that it might have the opposite effect on the users: a decreased confidence
in the library. The reason why standard tools such as Gnuplot fail to plot the relative error
of this function should not come as a surprise. Indeed, their plotting procedures perform
binary642 computations, as it is the floating-point arithmetic natively supported by most
processors. Such computations have a precision of 53 bits, while the relative error we are
interested in is 2−62. For instance, a precision of at least 90 bits is needed for the plot to look
sensible when using Sage.

-5e-12

 0

 5e-12

 1e-11

 1.5e-11

 2e-11

-8e-05 -6e-05 -4e-05 -2e-05 0 2e-05 4e-05 6e-05 8e-05

-2.5e-19

-2e-19

-1.5e-19

-1e-19

-5e-20

 0

 5e-20

-8e-05 -6e-05 -4e-05 -2e-05 0 2e-05 4e-05 6e-05 8e-05

Fig. 1 On the left, the function from Equation (1), as plotted by the Gnuplot tool, which relies on binary64
floating-point numbers. On the right, its actual graph, as plotted by Sollya.4

At that point, we have no other choice than to turn to some other tools, if we ever
want to trust the correctness proofs of mathematical libraries. The property above is quite
representative of the kind of statements one encounters when proving a mathematical library.
In fact, the correctness of a modern library might depend on the proof of hundreds of tight
bounds on univariate functions, for table-based implementations [22]. Ideally, we should
even go all the way to a formal proof, to get the highest confidence in the implementation of
these libraries.

1 http://lipforge.ens-lyon.fr/www/crlibm/

2 Binary64 is the name of the IEEE 754–2008 floating-point format that was formerly known as the “dou-
ble precision” format.
4 http://sollya.gforge.inria.fr/

http://lipforge.ens-lyon.fr/www/crlibm/
http://sollya.gforge.inria.fr/

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 3

1.1 Background and Scope

Historically, the CoqInterval development was at the origin of this effort to verify bounds
on univariate functions by using the Coq proof assistant. It provided a formalization of a
computable floating-point library [18] and a decision procedure based on interval arithmetic
was built on top of it [19]. The floating-point reference algorithms were later moved to the
Flocq library [3], while the CoqInterval library focused on formalizing faster versions of the
floating-point operators and elementary functions [20]. Independently developed, the Coq-
Approx library was built on top of CoqInterval’s formalization of interval arithmetic. It was
designed to compute formally-verified polynomial approximations of univariate functions
which can then be fed to programs solving the Table-Maker’s Dilemma [4,17].

So, at that point in time, we had, on one side, a decision procedure to verify bounds on
univariate functions and, on the other side, a library able to generate accurate polynomial
approximations. Since verifying bounds on a univariate polynomial might be faster than
on an arbitrary function, it was then natural to try to merge both approaches in order to
get a more efficient decision procedure for the Coq proof assistant. This paper gives an
overview of how these different libraries are combined together and what features they offer
in the context of automatically and formally verifying bounds on univariate functions. The
resulting decision procedure is part of the CoqInterval formalization, which is available at

http://coq-interval.gforge.inria.fr/

Before going any further, let us describe which kind of expressions we intend to prove
bounds on. At first, we can qualify these expressions as being univariate: only one variable
can occur in them; all the other arity-0 symbols are numeric constants. This is a bit too
restrictive though. Indeed, the approach we present is based on interval arithmetic, so the
amount of variables does not really matter, only the number of their occurrences does. A
better description would therefore be that, for tight bounds to be computed, among all the
variables of the expression, only one (say, x1) occurs several times. In the sequel, we will say
that such an expression is quasi-multivariate. Note that this requirement could be relaxed
a bit further: if a variable is the only one to appear in a sub-expression, it can be seen
as appearing only once in that sub-expression. For instance, the function f (x, y) = x +

cos(x + (y + exp(y))) fits this interpretation since y only occurs in the (y + exp(y)) sub-
expression and x does not occur there. As a consequence, the methods presented in this paper
could deal with such a function. Still this hardly covers all the multivariate expressions,
hence the usage of “univariate” and “quasi-multivariate” to characterize the expressions the
CoqInterval library can handle.

1.2 Related Works

There are various other systems that make it possible to prove inequalities on real-valued
expressions. Their purposes are rather diverse. Some are limited to univariate expressions,
while others can deal with multivariate expressions. Some are limited to polynomial ex-
pressions, while others also support some elementary functions, e.g. exp, tan. Finally, some
generate proofs that are mechanically checked by proof assistants, while others are stan-
dalone tools.

Let us start with Sollya [7,6]. Its interface looks like it comes from a generic computer
algebra system but the tool is dedicated to manipulating univariate expressions and com-
puting guaranteed bounds on them. It supports a large range of elementary functions. It

http://coq-interval.gforge.inria.fr/

4 Érik Martin-Dorel, Guillaume Melquiond

is based on the interval arithmetic paradigm: while its results might be useless because of
overestimation, they are never incorrect, by design. Its infnorm algorithm for computing
approximation bounds is able to generate proofs written in natural language. There exists no
tool that can mechanically check them.

MetiTarski is another standalone tool, but it does look like a decision procedure [1]. This
is a version of the Metis resolution prover that was extended with a decision procedure solv-
ing polynomial systems. Elementary functions are supported thanks to axioms giving some
polynomial lower and upper bounds on them. It is complete when it comes to polynomial
expressions, but for elementary functions, it is only as strong as the polynomial approxima-
tions it uses for them. MetiTarski can generate proofs but, to our knowledge, there exists
no tool that can mechanically check them yet. For instance, while PVS provides a metit
strategy, it blindly trusts the result of MetiTarski [10].

The HOL Light proof system provides a decision procedure REAL_SOS for polynomial
systems based on sum-of-square certificates [13]. The certificates are generated by an exter-
nal non-guaranteed solver for semi-definite programming; their correctness is then verified
by the HOL Light kernel. Because of round-off errors in this external solver, the certificates
might fail the verification step. For this reason, the decision procedure also uses various
heuristics to improve the handling of univariate expressions.

In the context of the Flyspeck project,5 a new HOL Light procedure verify_ineq
was designed in order to support multivariate expressions involving some elementary func-
tions [25]. An external tool first precomputes a suitable subdivision of the input domain.
Then, on each subdomain, the procedure computes an order-1 Taylor–Lagrange polynomial
approximation (that is, with a quadratic remainder) in HOL Light and uses it to prove the
bound on the expression. Computations are performed using interval arithmetic.

For multivariate polynomial expressions, the PVS proof system uses an approach based
on Bernstein polynomials [23]. It first represents the input expression in the Bernstein basis.
Then it uses a branch-and-bound procedure to compute tight enclosures of the extremum
values. There is also an interval strategy for bounding multivariate expressions that in-
volve elementary functions. It relies on interval arithmetic and a generic branch-and-bound
algorithm [24].

Finally, another tool was designed to tackle the multivariate inequalities that appear in
the Flyspeck project: NLCertify [2]. First, non-algebraic expressions are bounded by sets of
quadratic forms. Then, the resulting semialgebraic system is solved using an external non-
guaranteed solver for semi-definite programming. All the results are meant to be verified
using the Coq proof assistant, but for now, only the certificates for expressing polynomials
as sums of square are.6

1.3 Content

Interval arithmetic is a well-known tool to compute bounds on real-valued expressions [21].
In this paper, an interval denotes a closed subset of the real numbers which is represented by
a pair of bounds [a,b]. (Other representations of intervals, e.g. midpoint-radius m±r , will not
be used.) The main idea behind interval arithmetic is to extend operations on real numbers
to operations on intervals. This extension should satisfy two properties. First, computing the

5 https://code.google.com/p/flyspeck/

6 The author of NLCertify is considering relying on CoqInterval to check the quadratic forms that bound
elementary functions. This would be a step further in getting completely verified results with NLCertify.

https://code.google.com/p/flyspeck/

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 5

result of an interval operator should only involve arithmetic operations on the bounds of the
input intervals, so that computing with intervals is both effective and efficient in practice.
Second, the interval operators should satisfy the containment property: the resulting interval
should be large enough so that it contains all the possible results of the operation applied
to real numbers. That way, interval arithmetic can be used to formally prove properties on
real-valued expressions. Section 2 gives some preliminaries about interval arithmetic and
presents the interval tactic for proving tight bounds on univariate and quasi-multivariate
expressions automatically. It also shows how the CoqInterval library is structured.

For the proofs to be performed automatically, the Coq proof assistant has to be able to ef-
fectively compute using intervals. For that purpose, a floating-point arithmetic is formalized
in Coq and proved correct with respect to real arithmetic. Then an interval arithmetic is built
using floating-point numbers as bounds and proved to preserve the containment property.
Section 3 shows how these arithmetics are formalized in Coq.

Thanks to containment, properties that can be deduced from an interval computation
are trivially correct. Unfortunately, interval arithmetic is plagued by a major issue called
the dependency effect. Indeed, the efficiency of interval arithmetic does not come for free:
while the resulting intervals are guaranteed to contain any possible real result, the overes-
timation might be so coarse that it is impossible to deduce any non-trivial fact from them.
The archetype of this situation is the interval (−∞,+∞), which trivially contains all possi-
ble real values for the expression under study, but yields no further information. This issue
appears as soon as a variable occurs several times in an expression evaluated by interval
computations. Indeed, naive interval arithmetic does not track the dependencies between all
these occurrences. Section 4 presents three approaches that we have formalized in Coq to
alleviate this issue: bisection, automatic differentiation, and Taylor models.

Finally, Section 5 compares the performance of our implementation with all the tools
described in Section 1.2 on a large set of examples. These examples contain various ap-
proximation problems, but also some tests taken from MetiTarski, and some well-known
multivariate problems.

2 The interval and interval_intro Tactics

The CoqInterval library provides two tactics that allow one to automatically perform proofs
using interval computations: interval and interval_intro. The interval tactic ap-
plies to goals that are inequalities over the reals. If the tactic cannot solve the goal, it fails
with an error message. The interval_intro tactic is useful when doing some forward rea-
soning: when called on an expression, it computes an enclosure of it, then formally proves
it using interval, and finally adds it to the proof context. The syntax of these two tactics
is as follows:

– interval [options],
– interval_intro expr [mode] [options].

By default, interval_intro computes both a lower and an upper bound for expr. If only
one of them is needed, one can tell the tactic about it by specifying lower or upper as a
mode, so as to speed up the proof process. Both tactics can be configured with the following
options:

– “i_prec p” changes the precision of floating-point computations (default: 30 bits),
– “i_depth n” changes the maximum depth of the bisection process (default: 15 for
interval, 5 for interval_intro),

6 Érik Martin-Dorel, Guillaume Melquiond

– “i_bisect x” asks for a bisection along variable x (Section 4.1),
– “i_bisect_diff x” asks for a bisection and an automatic differentiation of expressions

with respect to variable x (Section 4.2),
– “i_bisect_taylor x d” asks for a bisection and the computation of degree-d Taylor

models with respect to variable x (Section 4.3).
Obviously, the last three options are mutually exclusive, and if none of them is passed, the
tactic does not use any method to reduce the dependency effect.

Below is a toy example showing the usage of the tactic. (Rabs denotes the absolute value
in Coq; other symbols have their intuitive meaning.)

Goal
forall x, 3/2 <= x <= 2 ->
forall y, 1 <= y <= 33/32 ->
Rabs (sqrt(1 + x / sqrt(x + y))

- 144/1000*x - 118/100) <= 71/32768.
Proof.
intros.
interval with (i_prec 19, i_bisect x).

Qed.

Notice that the goal inequality involves two variables x and y. In fact, the tactic can
cope with an arbitrary number of variables; but the methods for reducing the dependency
effect can be applied to only one of those variables, here x. As for performance, the formal
verification takes half a second, which is slow with respect to some other Coq tactics, but
still tolerable for the user.

The tactic supports any expression composed of the following standard Coq operators:
Ropp (unary minus), Rabs (absolute value), Rinv (multiplicative inverse), Rsqr (square),
sqrt, cos, sin, tan, atan, exp, ln, pow (power by a nonnegative integer), powerRZ (power
by any integer), Rplus, Rminus, Rmult, Rdiv. The constant PI is also supported. There are
some restrictions on the domain of a few functions: pow and powerRZ are only supported
if the exponent has a numeric value; inputs of cos and sin should be between −2π and
2π; inputs of tan should be between −π/2 and π/2. If not, the tactic might fail to prove
anything interesting. These restrictions on the trigonometric functions are related to the naive
implementation of their interval versions; any improvement to their code would lift them.

2.1 Preliminaries About Interval Arithmetic

Throughout this article, a boldface variable x denotes an interval enclosing a real variable x.
Its lower and upper bounds are written x and x, so that x = [x, x]. A function over real
numbers is denoted f and its application is f (x). The image of interval x by f is f (x); it is
defined as

f (x) = {y | ∃x ∈ x, y = f (x)} .
An interval extension of f is denoted f. It is not uniquely defined, since it just has to satisfy
the containment property:

∀x ⊆ R, f (x) ⊆ f(x).
Interval operators usually satisfy some other properties, such as isotonicity,7 but they are not
required to prove the correctness of the operator itself. As a matter of fact, the isotonicity

7 An interval function f is isotone if, for any pair of intervals (x, x′), we have x ⊆ x′ =⇒ f(x) ⊆ f(x′)
(see also [11, Definition 4.8.10]).

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 7

property does not occur in any of our proofs, but it explains why the bisection technique
(presented later on in the paper) can reduce the dependency effect.

The main idea behind interval arithmetic, dubbed the fundamental theorem of interval
analysis, is that the containment property is preserved by function composition, e.g. f ◦ g is
an interval extension of f ◦ g [21]. Thus one only needs to build interval extensions of basic
operators in order to perform interval computations.

In order to prove that the formula ∀x1 ∈ x1, . . . , ∀xn ∈ xn, f (x1, . . . , xn) ∈ y holds
for some composite expression f , one first builds an interval extension f of f using basic
interval extensions and composition. Then one computes f(x1, . . . ,xn) and checks whether
it is a subset of y. If it is a subset, the original formula holds. That is the way the tactic uses
interval arithmetic to automatically prove properties.

So as to support half-bounded intervals, we allow x to be −∞, and x to be +∞. (Note
that, while we denote intervals with square brackets, in the case of infinite bounds, they
are not part of the interval, that is, [−∞,+∞] = R.) Infinite bounds are not a mandatory
feature of interval arithmetic and one could define a usable one without them. It is helpful to
have them though, as we ultimately want to reason about inequalities, which half-bounded
intervals make easy to represent. For instance, in order to prove that ∀x, x ≤ 0⇒ f (x) ≥ 0,
one can just compute the following interval inclusion: f([−∞,0]) ⊆ [0,+∞].

Let us now consider the interval subtraction as an example. One way to define this
operator sub so that it satisfies the containment property is as follows:

∀u,v ⊆ R, sub(u,v) = [u − v,u − v]. (2)

Notice that an interval subtraction can be performed at the cost of just two bound subtrac-
tions, which makes it an efficient operation. Generally speaking, most interval operations
have this kind of complexity. The implementation is rather straightforward, though one has
to be careful when performing the operations on bounds, due to the potential presence of
infinities. They also tend to make the proof of the containment property a bit cumbersome
due to the explosion of cases.

Let us consider another example, the exponential function. Due to the monotonicity of
exp, the containment property is trivially satisfied by the following interval extension:

∀u ⊆ R, exp(u) = [exp(u),exp(u)].

It raises a question though: how to represent bounds? As can be seen on that example,
they can indeed be almost any real number. We could simply use standard real numbers to
represent them, but that would prevent us from using the reduction engine to perform com-
putations on them, so this is not a suitable solution for a Coq implementation. We could
restrict the bounds to computable real numbers instead, but we expect that such an imple-
mentation would not be tractable, due to performance issues.

This issue is not new and was dealt with by every arithmetician wanting to effectively
compute such interval extensions. Since the only property we are interested in is the con-
tainment property, an interval result does not have to be the tightest possible one, it can be
slightly enlarged. As a consequence, instead of real numbers, one can use any subset of R
as the set of finite bounds. We only need to have some functions 5 and 4 that, given a real
number, return a bound that is smaller, respectively larger. The interval extension of exp can
then be defined as

∀u ⊆ R, exp(u) = [5(exp(u)),4(exp(u))]. (3)

8 Érik Martin-Dorel, Guillaume Melquiond

Note that these two functions 5 and 4 are only for exposition and proof purpose. We cannot
first compute the exponential and then round it to a bound. Both operations happen at once:
given a bound b, we compute a bound that is smaller (resp. larger) than exp(b).

Now, which subset of real numbers to choose? We could use rational numbers as was
done in PVS [8]. But numerators and denominators of rational numbers tend to grow during
computations, hence making them slower as they progress further. To prevent this growth,
we could round rational numbers from time to time. But if we are to round them, we might
just as well use only floating-point numbers (a subset of rational numbers) as they are espe-
cially suited for rounded operations.

2.2 Architecture of CoqInterval

Our CoqInterval library has been designed with a special focus on modularity, in order
to easily switch the implementation of basic building blocks, but also to facilitate further
extensions of the formalization. Its architecture is summarized in Figure 2.

The “Tactic” module provides the tactics themselves and their implementation: pars-
ing the expressions and the bounds, creating a suitable formal proof, and causing Coq to
check it automatically (see Section 2.3). It relies on several modules that are able to com-
pute bounds of real-valued expressions. One of the approaches is based on automatic differ-
entiation “Auto-diff” (see Section 4.2). Another approach is based on rigorous polynomial
approximations using “Taylor models” (see Section 4.3); they are built using the CoqApprox
library [4,17], now part of CoqInterval.

Both approaches perform interval computations and can be parameterized by any imple-
mentation of interval arithmetic that satisfies the “IntervalOps” interface. The CoqInterval
library comes with one such implementation: “FloatInterval” (see Sections 3.2 and 3.3). It
represents intervals as pairs of floating-point bounds. Again, the implementation of floating-
point arithmetic is not fixed and any implementation that satisfies the “FloatOps” interface
can be used to obtain an interval arithmetic. This interface provides basic arithmetic opera-
tors such as +, ×,

√· (see Section 3.1).

Finally, several implementations provide a floating-point arithmetic satisfying “FloatOps”.
All these implementations are proved correct using a reference implementation based on the
Flocq library [3]. The simplest implementation, “GenericFloat”, just reflects the reference
implementation. The other implementation, “SpecificFloat”, provides optimized versions of
the operators, given some dedicated operations on integers. These dedicated operations are
described by the “FloatCarrier” interface. Two radix-2 implementations of this interface are
provided “StdZRadix2” and “BigIntRadix2”. The differences between these two implemen-
tations are the performance and the surface of the Coq kernel they exercise. “BigIntRadix2”
is the fastest one, while “StdZRadix2” uses a smaller part of the kernel.

To summarize, the tactics rely on the following modules. They use the “Auto-diff” and
“Taylor models” modules to perform bound computations. The tactics instantiate these mod-
ules using an interval arithmetic provided by the “FloatInterval” module, which they instan-
tiate using the “SpecificFloat” implementation of floating-point arithmetic. Finally, the tac-
tics instantiate this last module using “BigIntRadix2” which provides a fast arithmetic over
radix-2 integers.

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 9

Flocq

CoqInterval

CoqApprox

FP reference impl.

«interface»
FloatOps

radix : {β : Z | β ≥ 2}
F : Type
zero : F

add(mode, prec) : F→ F→ F

GenericFloatSpecificFloat

«interface»
FloatCarrier

radix : {β : Z | β ≥ 2}

...

«interface»
IntervalOps

I : Type
zero : I

add(prec) : I→ I→ I
exp(prec) : I→ I

StdZRadix2 BigIntRadix2

FloatInterval

Auto-diff. Taylor models

Tactic

interval [options]
interval_intro expr [mode] [options]

Fig. 2 Diagram (UML) that summarizes the architecture of the CoqInterval package.
The three kinds of arrows involved in the figure are:
A I if the module A is parameterized by a module that implements the interface I,
C I if the module C implements the interface I,
M C if the module M uses the module C.

2.3 Reification and Reflection

The interval tactic works by reflection. Given a goal G to prove, it constructs a Boolean
expression b, such that the following implication holds:

b = true⇒ G.

This general theorem has been proved once and for all; Coq just has to check that b and
G are suitable to instantiate it. Once this theorem has been applied to the goal, what is left
to prove is just b = true. Then the tactic tells Coq that this is just a consequence of the

10 Érik Martin-Dorel, Guillaume Melquiond

reflexivity of equality. The formal checker of Coq is thus forced to evaluate b to verify that
it is indeed equal to true (assuming the goal was provable this way), which concludes the
proof. In the context of Coq, this approach has two advantages. First, it leverages the efficient
reduction engines for the evaluation of b. Second, it produces proof terms that are tiny: just
two deduction steps.

An important point about reflection is that b is not a small expression. Indeed, several
libraries about integer arithmetic, a library about lists, a library about floating-point arith-
metic, a library about interval arithmetic, a library about Taylor models, etc., were used to
design the interval tactic. All the computable parts of these libraries might end up in b,
depending on which options were passed to the tactic. In fact, if the definitions were to be
unfolded, b would amount to several hundreds of lines of ML code. So it should not come
as a surprise that the evaluation of b is the expensive stage of the verification process.

Naive interval arithmetic, automatic differentiation, and Taylor models all follow the
same approach: they inductively perform computations on the sub-expressions in order to
deduce the range of the whole expression. Therefore, to automate this process, we need an
inductive representation of expressions. An abstract syntax tree would work, but we wanted
to allow for some sharing between common sub-expressions, so as to avoid performing
the same computations several times. So, instead, we represent expressions as straight-line
programs with static single assignment. An expression is a sequence of statements, each
statement being composed of an arithmetic operator and some integers pointing to the loca-
tion of the inputs. For instance, the expression (x + y) · x + (x + y) is reified into the following
program, with comments indicating which values would be contained in the program stack
before evaluating each statement.

(* initial state: [y, x] *) Binary Add 1 0
(* current state: [x+y, y, x] *) :: Binary Mul 0 2
(* current state: [(x+y)*x, x+y, y, x] *) :: Binary Add 0 1
(* current state: [(x+y)*x+(x+y), ...] *) :: nil

We have designed a generic evaluator for such programs. The tactic instantiates it in
several different ways to prove the goal. First, there is a trivial instance that associates to
each operator the corresponding uninterpreted function on real numbers. Given a program,
the evaluator thus produces the original real-valued expression; it is used to check that the
reification process produced the correct program. Then, there are three specializations of the
evaluator to do actual computations, one with single intervals, one with pairs of intervals
for automatic differentiation, and one with sequences of intervals for Taylor models. For
these three instances, we have proved that the arithmetic operators satisfy the respective
containment properties, and by induction, that the program evaluations do, too.

3 Arithmetic Computations Inside Coq

The CoqInterval library defines an interval type with bounds represented by floating-point
numbers. It provides several arithmetic operators over intervals and proves that they respect
the containment property. The implementation of these operators relies on performing com-
putations on interval bounds using floating-point operators. Section 3.1 gives an overview
of how these floating-point operators for addition, multiplication, division, and square root,
are defined. Section 3.2 then presents the interval type and how to define interval operators
for addition, multiplication, and so on. Finally, Section 3.3 shows how to combine basic

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 11

floating-point and interval operators to compute floating-point approximations and interval
extensions of elementary functions, e.g. exp and cos.

3.1 Floating-point Operators

Floating-point numbers are rational numbers that can be written m · βe with m and e two
integers and β a fixed integer larger than or equal to 2. The CoqInterval library does not
provide any mixed-radix operation, so let us assume that β is fixed once and for all. The set
of floating-point numbers is

F =
{
x ∈ R �� ∃m,e ∈ Z, x = m · βe } .

Note that the representation of a real number as a floating-point number m·βe , if it exists,
is not unique. In practice, this is neither an issue nor a source of inefficiency (floating-point
rounding prevents the integers from growing large, as seen below), so we do not have to
restrict m to integers that are not multiple of β.

Defining addition and multiplication on this representation is straightforward:

(m1 · βe1) + (m2 · βe2) = (m1 × βe1−e + m2 × βe2−e) · βe with e = min(e1,e2),

(m1 · βe1) × (m2 · βe2) = (m1 × m2) · βe1+e2 . (4)

Obviously, such operations suffer from the same growth that caused us to discard rational
numbers in the first place. So let us introduce the operators 5 and 4. These operators are
parameterized by a precision p. This positive integer specifies how many radix-β digits
the resulting mantissa can have at most. Contrarily to β, the value of p can be selected on
a per-operation basis. As a matter of fact, the CoqInterval library increases the precision
of intermediate computations on-the-fly when approximating elementary functions, if the
current precision would lead to grossly inaccurate results; this will be detailed in Section 3.3.

To define 5 and 4, let us first restrict F to the following subset:

Fp =
{
m · βe ∈ F �� |m | < βp

}
which will be the range of these operators. They can now be defined as

5(x) = max
{
y ∈ Fp

��� y ≤ x
}

and 4(x) = min
{
y ∈ Fp

��� y ≥ x
}
. (5)

By definition, we have 5(x) ≤ x ≤ 4(x) for any real x. So these operators are sufficient to
ensure the containment property. The definitions of F, of Fp , and of the rounding operators
come from the Flocq library, a multi-radix multi-precision multi-format formalization of
floating-point arithmetic in Coq [3].

Notice that these operators return the tightest representable enclosure of x, which is
much stricter than what is actually needed for automated proof purpose. Their definitions,
however, make it possible to use external tools to test the Coq implementation, and vice-
versa. Indeed, these definitions comply with the IEEE-754 standard for floating-point arith-
metic and are thus found in most floating-point hardware and in libraries such as SoftFloat8
or MPFR.9 Note that the precision p is arbitrary for MPFR, while it is restricted to a few val-
ues (e.g., p = 24 and p = 53) for hardware and SoftFloat. A peculiarity of the floating-point

8 http://www.jhauser.us/arithmetic/SoftFloat.html

9 http://www.mpfr.org/

http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.mpfr.org/

12 Érik Martin-Dorel, Guillaume Melquiond

formalization of CoqInterval is that the exponent range of the numbers in Fp is unbounded,
implying that no arithmetic underflow nor overflow can occur.

The definitions of 5 and 4 in Equation (5) are suitable for proofs, but they do not offer
a way to actually compute the results of the operators. So they are not amenable to auto-
mated proof. So the CoqInterval library also provides some functions that, given a value of
F compute a value of Fp . For instance, Fround_at_prec(β,mode,p,m · βe) returns the
element of Fp the closest to m · βe , with the meaning of closest being controlled by mode
(5 or 4). Then one can just compose such a function with + and × to get rounded values.
For instance, the rounded multiplication between two floating-point values is defined in our
CoqInterval library as follows.

Definition Fmul beta mode prec (x y : float beta) :=
Fround_at_prec mode prec (Fmul_aux x y).

In this definition, Fmul_aux is the exact product between two floating-point numbers of type
Fβ , as defined in Equation (4).

For division and square root, however, this approach does not work, since the interme-
diate results cannot be represented as values of F. So dedicated algorithms are provided for
these operators. While originally designed for the CoqInterval library, these algorithms and
their proofs have now migrated to Flocq.

That said, even if the algorithms in Flocq are useful as reference implementation, they
have not been implemented with a strong concern about performance. In particular, they do
not take advantage of the value of β or of the regularity of Fp (fixed precision, no subnormal
numbers). So our library also provides some optimized versions of these algorithms, which
are proved equivalent to the ones in Flocq. For instance, when integers use a radix-β rep-
resentation, to know whether an integer is a multiple of βk , rather than performing a costly
Euclidean division, one can just count the number of less-significant digits that are equal to
zero.

In the end, our CoqInterval library proposes several implementations of the basic floating-
point operators. For instance, one uses the Z type of integers represented as a string of bits,
while another one uses the BigZ type of integers represented as a balanced binary tree of
31-bit native integers. All these implementations have the same interface though (see Fig-
ure 2), so the user can swap one for the other. In particular, the interval operators (presented
in Section 3.2) do not care about the actual implementation of the floating-point operators.

In our setting, the floating-point formalization just has to provide an implementation of
the following floating-point operations and their correctness proofs: comparison, minimum,
maximum, absolute value, opposite, exact addition, exact subtraction, exact multiplication,
addition, subtraction, multiplication, division, square root, multiplication by a power of β,
multiplication by a power of 2, rounding, conversion from Z, and so on. The complete in-
terface can be found in the Interval_float_sig.v file. From now on, F will denote an
optimized implementation of this interface. So, while Fmul is a reference floating-point
multiplication using non-optimized integer computations, F.mul provides an optimized im-
plementation for a fixed radix β.

One last point about our floating-point arithmetic is that it supports a ⊥ element that is
propagated along the computations. So, the domain of all the functions is not F but F = F∪
{⊥}, and floating-point operations are extended accordingly, so ⊥ is an absorbing element.
Note that, in general, having such an absorbing element is not that useful for formalizing
most of floating-point arithmetic, e.g. rounding. In fact, the reference operators of Flocq do
not even support it. Its point will be clearer when it comes to interval arithmetic.

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 13

3.2 Interval Operators

As explained before, in order to support half-bounded intervals, one wants to use −∞ as a
lower bound and +∞ as an upper bound. Our floating-point arithmetic does not support such
infinities, but it supports an absorbing element ⊥, which we can use to represent infinities.
Whenever a floating-point lower bound is ⊥, the interval extends to −∞, and similarly for
the upper bound and +∞. The set I of intervals with floating-point bounds is thus just F2.
These intervals are built with the constructor Ibnd in the code snippet below.

Now that we have a type and an arithmetic for the bounds, we can define interval op-
erators. Let us consider the example of interval subtraction. Its Coq implementation is as
follows, with F.sub being the floating-point subtraction, and rnd_DN and rnd_UP being the
directions 5 and 4.

Definition sub prec xi yi :=
match xi, yi with
| Ibnd xl xu, Ibnd yl yu =>
Ibnd (F.sub rnd_DN prec xl yu) (F.sub rnd_UP prec xu yl)

end.

Notice that, because ⊥ is absorbing, no extra care is taken to handle infinite bounds, they
just propagate along the computations. Theorem sub_correct then states that the imple-
mentation above satisfies the containment property, as given in Equation (2).

For interval multiplication, the implementation is not as simple as for subtraction. In-
deed, the traditional way of computing it is

mul(u,v) = [5(min(uv,uv,uv,uv),4(max(uv,uv,uv,uv))].

It suffers from two issues. First, it performs a bit too many multiplications of bounds.
Second, the resulting interval will be grossly overestimated, if one of the bound multiplica-
tion involves 0 and ⊥. For instance, such an algorithm would return [−∞,+∞] when com-
puting the product between [0,0] and [−∞,+∞] while the tightest interval satisfying the
containment property is [0,0]. So we use a variant of the algorithm that compares the input
bounds to retain only the relevant products, hence returning the tightest results while being
less costly on average.

Contrarily to the situation for floating-point arithmetic, division and square root on in-
tervals are as simple as multiplication, so we do not detail their implementation. Internally,
optimized implementations of multiplication and division are also available when one of the
inputs is known to be a point interval.

Finally, the last operation worth mentioning is the interval extension of x 7→ xk for k an
integer. Indeed, due to the dependency effect, computing x2 as mul(x,x) would give grossly
overestimated results if x straddles zero. More generally, computing xm+n as mul(xm ,xn)
is a poor choice in interval arithmetic. As a consequence, passing intervals to a fast expo-
nentiation algorithm would lead to pointless results.

So we provide a dedicated algorithm for this kind of exponentiation. It checks whether
k is even or odd, looks at the signs of the bounds of x, and then computes lower and/or
upper bounds on xk and/or xk using a fast exponentiation algorithm. Note that, contrarily
to the other operations, the result is guaranteed to be the tightest interval only when k ∈
{−1,0,1,2}. For the other powers, the bounds of the result might be off by a few units in the
last place10 (while still satisfying the containment property), for the sake of speed.

10 The unit in the last place of a real number x is the gap between the two floating-point numbers enclosing
x in a given format (see also [22, p. 32]).

14 Érik Martin-Dorel, Guillaume Melquiond

As with floating-point arithmetic, our interval arithmetic also supports an absorbing
element ⊥I . So the actual type of intervals is I = I ∪ {⊥I }. Again, there is not much use for
such an element and most implementations of interval arithmetic do without it. Its benefits
show up when implementing our interval tactic (and in particular with the approach based
on automatic differentiation), as it makes it possible to keep track of the results of partial
functions, e.g. [−1,1]−1 is defined as ⊥I (due to 0−1) rather than [−∞,+∞].

From now on, the interval operators add,sub,mul,div will be simply written using infix
notation +,−,×, /, while keeping the boldface convention for their interval operands.

3.3 Elementary Functions

At this point, we have some floating-point and interval functions for the basic arithmetic
operators: addition, multiplication, division, square root. Yet we want the tactic to support
more mathematical functions. In particular, we need some elementary functions, e.g. exp
and cos, since our goal is to formally verify libraries of such functions.

As before, in order to get interval extensions, the first step is to build floating-point
approximations. The first notable point is that we cannot expect to compute the best approx-
imations at a given precision for an elementary function. For instance, we can compute a
floating-point number y smaller than exp(x) for x a floating-point number, but we cannot
guarantee that y = 5(exp(x)). Indeed, while there are simple algorithms [27] for computing
5(exp(x)), proving their termination is next to impossible in Coq. Fortunately, our goal is
to perform interval arithmetic, so we are fine even if the results are not always the closest
possible floating-point numbers. So let us look for a good enough approximation rather than
the best one.

When the precision is known beforehand, the usual way of approximating a function
is the evaluation of a precomputed fixed-degree polynomial [22]. Since we want to handle
arbitrarily large precisions, we instead evaluate power series which we truncate on the fly.
There are two difficulties: knowing at which point to truncate the series and bounding the
error due to the part that was truncated away. There are techniques to solve these two issues,
as can be seen in MPFR, but the formalization effort they would require did not seem worth
the performance gain. If we wanted to approximate arbitrary special functions, e.g. Airy
or Bessel, we would have to apply such methods, but here we are dealing with elementary
functions.

The main difference between special functions and elementary functions is that the latter
have argument reduction identities. For instance, the identity cos(x) = 2 cos2(x/2)−1 makes
it possible to transform the input x into an input arbitrarily close to 0. (Note that, for β = 2,
the computation of x/2 is trivial and does not introduce any error.) Once x is close enough
to 0, the process of evaluating the power series becomes much simpler.

Consider an elementary function f that we want to approximate at point x. Let us assume
that it has a converging Taylor series f (x) =

∑
(−1)kak xk and that the sequence k 7→ ak xk

is positive decreasing. Then we have the following inequalities:

0 ≤ (−1)n *
,

f (x) −
n−1∑
k=0

(−1)kak xk+
-
≤ an xn .

They solve both issues at once: they tell us that we can stop summing terms when an xn

becomes small enough and that the truncated power series is off from the value of f (x) by
at most an xn .

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 15

As for the evaluation of the power series itself, we perform it using interval arithmetic.
Note that this interval computation only succeeds when evaluating floating-point functions,
not interval ones. Indeed, due to the alternated signs, the dependency effect is at its worst
here. Fortunately, for floating-point functions, the input interval is a point interval [x, x],
so the overestimation stays in check, as long as the precision of the interval computations
is large enough. But for interval extensions, inputs are usually not point intervals, so this
approach would not work.

We now have a way to compute an elementary function when x is close to 0, but we still
have to invert the argument reduction process for other inputs. Unfortunately, for a function
like cos or ln, our reconstruction of the result takes a number of arithmetic operations propor-
tional to ln |x |, and each of these operations incurs an additional overestimation. To alleviate
this issue, when approximating a function with a precision p, the intermediate computations
are performed at a precision p′ that depends on p and ln |x |.

The process is similar for functions other than cos. First, we look for an interval of R
where the function is approximated by an alternating series. The series should converge fast
enough, to ensure good performance. Then, we look for an argument reduction that brings
any input into this interval. Finally, we look for a recurrence that computes efficiently and
accurately the series. More details on how arguments are reduced and how precision was
tweaked can be found in [20].

Once we have floating-point approximations for elementary functions, we can devise
interval extensions. Since exp, ln, and arctan, are monotonic, extending them to intervals is
straightforward, as can be seen in Equation (3). Note that these extensions are not guaranteed
to return the tightest results, since the corresponding floating-point operations do not even
have this property.

As for cos, sin, and tan, their interval extensions are quite naive. Indeed, because they are
not monotonic, the implementation and the proof of these extensions have been simplified
by making their results meaningful only on a small domain around zero. For instance, the
interval extension of sin just returns [−1,1] if its input is not a subset of [−2π,2π] (while the
floating-point implementation of sin can handle arbitrarily large inputs).

4 Reducing the Dependency Effect

The dependency effect was mentioned several times already, but we were able to avoid it up
to now, since the interval extensions we had to compute (e.g. xk ,

∑
ak xk) were under our

control. But we now want to tackle whatever the user can throw at our automated procedure,
so correlations are bound to appear.

First of all, let us explain what the dependency effect is. Consider the expression x − x.
Thanks to the containment property, we know that the values of this expression are contained
in x − x. Let us perform this interval computation and see what we can deduce about x − x.
For x = [0,1], we have

x − x = [0,1] − [0,1] = [0 − 1,1 − 0] = [−1,1].

If our intent was to prove that x − x = 0 when x ∈ [0,1], there is no way we can deduce it
from the result [−1,1].

This seems like an artificial example, but this is exactly what happens in practice. Re-
member that our objective is to prove inequalities that appear when verifying the correct-
ness of libraries of mathematical functions and that these inequalities have the general form

16 Érik Martin-Dorel, Guillaume Melquiond

| f (x) − f̃ (x) | ≤ ε with f̃ an approximation of f . Because of the dependency effect, com-
puting f(x) − f̃(x) will never produce any interesting result.

Note that, while the dependency effect is specific to interval arithmetic, the theory of real
arithmetic, once extended with elementary functions, is nevertheless undecidable. Indeed,
while the polynomial fragment is decidable, adding periodic functions such as sin makes
it possible to encode integers, thus making this class of problems impossible to solve in
general. Yet there is a subclass of problems that we expect to verify by reducing the impact
of the dependency effect.

This section presents the various methods we have formalized to reduce the dependency
effect, from the simplest one to the most complicated. None of these methods are new and
some of them have been used since the early days of interval arithmetic [21]. The most
naive approach is the bisection (Section 4.1), then comes an approach based on automatic
differentiation (Section 4.2), and finally the most powerful approach using Taylor models
(Section 4.3).

4.1 Bisection

The idea behind bisection is simple. If an interval x can be decomposed into sub-intervals
x = x1 ∪ . . . ∪ xn , then we have the following inclusion:

f (x) ⊆ f(x1) ∪ . . . ∪ f(xn).

This approach only works if the right-hand side is tighter than f(x) (which it fortunately is,
by isotonicity). If we consider the x−x example again, we can see that, by using x1 = [0,1/2]
and x2 = [1/2,1], we now obtain x − x ∈ [−1/2,1/2] instead of [−1,1]. By doubling the
number of input intervals, we have reduced the overestimation of the output interval by a
factor 2. This statement is a general guideline when it comes to the dependency effect.

This approach, however, does not avoid the dependency effect in all practical cases. For
instance, it is impossible to find a subdivision such that one can prove x − x = 0 with this
approach. And even if we only wanted to prove |x − x | ≤ 10−12, it would require to consider
1012 sub-intervals and perform as many interval computations, which is out of reach of any
proof assistant.

Still, this approach has a property that makes it interesting in practice. It can easily be
combined with other approaches to reduce the dependency effect. Assume that some other
approach fails because of some singularity in the input interval x. Then the bisection will
be able to isolate the singularity in a tiny interval x2 and let the other approach deals with
x \ x2 = x1 ∪ x3.

Given a function chk from intervals to Booleans, the bisection process works as follows:

bisect(n,x) =

if n = 0 then false
else if chk(x) then true
else let m be the midpoint of x in
bisect(n − 1, [x,m]) && bisect(n − 1, [m, x])

Integer n is the maximum depth of the process: the width of the sub-intervals will never
diminish below 2−n times the width of x. At each step, either chk(x) returns true, or x is split
into two sub-intervals and the bisect function is recursively called on each sub-intervals.
If bisect(n,x) evaluates to true, then for any predicate P over real numbers, we have

(∀u, chk(u) = true⇒ ∀u ∈ u, P(u)) ⇒ ∀x ∈ x, P(x). (6)

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 17

So, when trying to prove some property ∀x ∈ x, P(x), we first build the corresponding
chk function, we then prove the left-hand side of Equation (6), and we finally call bisect,
hoping that it evaluates to true. For instance, let us suppose that we want to prove some
bound on an approximation error, that is, P(x) is | f (x) − f̃ (x) | ≤ ε. We define chk(u) as
|f(u) − f̃(u)) | ⊆ [−∞, ε]. The left-hand side of Equation (6) thus becomes a straightforward
consequence of the containment property.

As explained above, bisection cannot be expected to always succeed in canceling the
dependency effect. Let us characterize when it does though. For a quasi-multivariate ex-
pression on bounded input intervals, as long as the bounds the user wants to prove are not
attained for some values in the input intervals, there should always be a precision and a
bisection depth such that the tactic succeeds. Indeed, the tactic only supports functions that
are continuous on their definition domain, so the range of the expression is a closed inter-
val if the input intervals are a subset of its domain. As a consequence, if the bounds to be
proved are not attained, there is a gap sufficient to compensate both sub-expression depen-
dencies and floating-point round-off errors. Note that this only tells us that the process will
eventually succeed, not how fast.

The previous remark explains how bisection guarantees the semi-decidability of our
approach, given enough computing power. Now let us see some of the shortcomings of
our implementation. Since bisection is performed inside the logic of Coq rather than being
driven by an external source, e.g. an oracle that would give the optimal partition, the partition
that is actually built might be arbitrarily large. For instance, let us suppose that, for a given
problem, the optimal partition is [0,2−n] ∪ [2−n ,1]. The bisection has to process 2n + 1
intervals to complete the proof (n failures and n + 1 successes), while an oracle could have
immediately provided the two optimal intervals.

4.2 Automatic Differentiation

The main issue that occurs in the archetype x − x of the dependency effect is the fact that
x and −x have opposite variations: when one increases, the other decreases. This is the
kind of correlations that naive interval arithmetic cannot track. The first idea to reduce the
dependency effect is thus to track the way sub-expressions evolve when the input x changes.

Let us consider the function f (x) = x − x. Its derivative is f ′(x) = 1 − 1. The interval
extension f ′(x) evaluates to [1,1]− [1,1] = [0,0], which is the optimal enclosure. From that
enclosure, we can deduce that f is a constant function, and thus that x− x = 0 by performing
an evaluation at an arbitrary point.

Mechanizing this reasoning is done as follows. First, let us recall the Taylor–Lagrange
formula at order 0 (also known as the mean-value theorem). Assuming that f is differentiable
over x and that x0 ∈ x, we have

∀x ∈ x, ∃ξ ∈ x, f (x) = f (x0) + (x − x0) × f ′(ξ).

Weakening it using the containment property, it becomes

∀x ∈ x, f (x) ∈ f([x0, x0]) + (x − [x0, x0]) × f ′(x).

By definition, the right-hand side is an interval extension of f . (In practice, one would
choose the midpoint of x for x0.)

To automate this approach, we need some way to compute f ′(x). This is done using
the ideas of automatic differentiation. Instead of just performing arithmetic on intervals,

18 Érik Martin-Dorel, Guillaume Melquiond

we now compute on pairs of intervals. The first member of the pair is the enclosure of the
expression, while the second one is the enclosure of its derivative. Here are a few examples
of operations:

(u,u′) + (v,v′) = (u + v,u′ + v′),
(u,u′) × (v,v′) = (u × v,u′ × v + u × v′),

exp(u,u′) = (exp(u),u′ × exp(u)).

There is a containment property that suits these pairs of intervals. As with the contain-
ment property on single intervals, it is preserved by composition, so we get (f(x), f ′(x))
at the end of the computation. Once we have f ′(x), we compute f([x0, x0]) and we apply
the interval version of the Taylor–Lagrange formula. The first member of the pair could be
discarded, but we use it to further refine the result of the Taylor–Lagrange formula.

This approach was the reason for introducing the absorbing element ⊥I . It is used as the
second member of the pair (u,u′) to indicate that the sub-expression is not differentiable
at some points of x (or at least not proved to be differentiable) and thus that the Taylor–
Lagrange formula cannot be used at the end. In that case, we simply use the first member of
the pair. For instance, expressions involving square roots or absolute values have no mean-
ingful derivatives at point 0.

Automatic differentiation nicely integrates with interval arithmetic, but there is still some
dependency effect when computing (x− [x0, x0]) × f ′(x). In some cases, we can obtain tight
enclosures by relying on some monotonicity argument. Indeed, if the interval f ′(x) happens
to be of constant sign, then we can prove that f is monotonic on x. As a consequence, we
can just compute f([x, x]) and f([x, x]), take their convex hull, and thus obtain a superset of
f (x). Since the input intervals are point intervals, the dependency effect is minimal and the
enclosure is tight. When combining automatic differentiation with bisection, the latter will
split into sub-intervals at worst until f ′ has constant sign on them.

Finally, it should be noted that automatic differentiation also handles unbounded inter-
vals. For instance, evaluating the expression exp x − (1 + x) for x ∈ [0,+∞] gives the pair
([−∞,+∞], [0,+∞]). The first component is useless, but the second one tells us that the
function is increasing. So an evaluation at x = 0 suffices to prove that the expression is
nonnegative for x ∈ [0,+∞]. This ability to handle monotonic functions and unbounded
intervals is specific to this approach; it will be lost with Taylor models.

A limitation of automatic differentiation (and of Taylor models as well) is that it requires
the expression to be differentiable. If it is not, it does not perform any better than naive
interval arithmetic. Yet this approach could be made to work for any Lipschitz-continuous
function. In fact, even that would be too restrictive, since a function such as square root at
zero could be handled. The idea is that derivatives do not really matter, only slopes do. The
Taylor–Lagrange formula could then be replaced by

∀x ∈ x, f (x) ∈ f([x0, x0]) + (x − [x0, x0]) × hull
{

f (u) − f (v)
u − v

�����
u , v ∈ x

}
.

Interestingly, most of the formulas used for automatic differentiation would work in this
new setting, since the set of derivatives is equal to the closure of the set of slopes for C1

functions.
There is another issue with our implementation of automatic differentiation. For each

sub-expression, its range and the range of its derivative are computed. But the knowledge
learned about the derivative is not used to further refine the range of the sub-expression.
Only the final expression benefits from the Taylor–Lagrange formula. As a consequence,

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 19

the intermediate computations suffer from the dependency effect, which in turn inflates the
overestimation on the derivatives, thus causing some monotonic functions to not be detected
as such. Obviously, applying the Taylor–Lagrange formula at each step would induce an
overhead, so there is a trade-off to explore between both implementations.

4.3 Taylor Models

4.3.1 Preliminaries About Taylor models

Borrowing the term chosen in [15,16], we will call Taylor model a pair (P,∆), where P is
a polynomial (in the Taylor polynomial basis11) and ∆ an interval error bound. The intuition
of such a data type is that a Taylor model (P,∆) represents a whole set of functions, namely
the functions f : D → R (on a given domain D ⊆ Rn) such that

∀x ∈ D, f (x) − P(x) ∈ ∆, (7)

or more concisely f ∈ ~(P,∆)�D .
To be more specific, we rely on the same setting as Mioara Joldeş’s thesis [14, Chap. 2]:

we especially focus on Taylor models in the univariate case, but we do not enforce that
the polynomials P are actual Taylor expansions of the considered functions. Furthermore,
we specifically deal with Taylor models (P,∆) where the polynomial P has tight interval
coefficients.

This latter choice simplifies the implementation of the Taylor model algorithms within
an approximate arithmetic, as the rounding errors are directly handled by the interval com-
putations. So this specific kind of Taylor models is used in all the intermediate steps of our
formalized algorithms. But if need be, it is very easy to turn the “interval Taylor model”
(P,∆) so obtained into a “standard Taylor model” (P,∆′) satisfying Equation (7). One just
need to pick some Pi inside the Pi and accumulating the errors into ∆′. Even if this al-
gorithm is not required for implementing the approach presented in this paper, it has been
formally verified within the CoqApprox library.

4.3.2 Main Features of the CoqApprox Formalization

The CoqApprox library gathers certified algorithms for univariate Taylor models, which can
be executed inside the logic of Coq [4,17]. The main data type involved in the formalization
is a record that combines a polynomial and an interval; it is parameterized by a type for
representing polynomials and another type for intervals. We say that (P,∆) is a Taylor model
for a given function f : R→ R over a given interval I around x0 if it satisfies the following
predicate (cf. [17, Definition 1]):

f ∈ ~(P,∆)�x0
I

def⇐⇒ x0 ⊆ I ∧ 0 ∈ ∆

∧ ∀x0 ∈ x0, ∃Q ∈ R[X],

size Q = size P,
∀i < size P, Qi ∈ Pi ,

∀x ∈ I, f (x) −
∑

i<sizeQ

Qi · (x − x0)i ∈ ∆.

(8)

11 i.e. in the univariate case, P is considered as P(x) =
n∑
i=0

Pi · (x − x0)i for a given expansion point x0.

20 Érik Martin-Dorel, Guillaume Melquiond

Before elaborating on the algorithms that rely on this predicate, its definition deserves some
detailed explanation.

First, the “expansion point” x0 involved in (8) is actually an interval. This might seem
surprising, but this specific choice will be a key requirement for the composition algorithm,
due to the presence of polynomials with interval coefficients. Besides, it can be useful if we
ever want to compute a Taylor model around an irrational expansion point.

Second, as far as univariate polynomials are concerned, our formalization deals with
their “size” rather than their degree. Indeed, we do not enforce that the “leading term” of the
polynomial part of a Taylor model (P,∆) has a nonzero coefficient. So we need not prove
some additional “side-conditions” related to the degree, which eases the formalization.

Regarding the three conditions of the predicate (8) itself, the first two simply assert
that all the expansion points x0 ∈ x0 belong in the input interval under study, and that the
polynomial part of the Taylor model also belongs to the “set of functions” that the Taylor
model represents. The statement of the third condition is just a direct translation of the
following condition:

for any expansion point x0 ∈ x0,

there exists some polynomial Q in the Taylor basis around x0, such that

Q is “contained” in the interval polynomial P and ∀x ∈ I, f (x) −Q(x) ∈ ∆.

Now let us give an overview of the algorithms on Taylor models that have been formal-
ized in the CoqApprox library.

First, we have some Coq functions to compute Taylor models for basic functions such
as square root, exponential, or sine. For instance, the algorithm for exponential is a function
TM_exp that takes four arguments: the working precision prec of floating-point computa-
tions, two intervals x0 and I, and the order n of the desired Taylor model. It returns a Taylor
model TM_exp(prec,x0,I,n) centered at x0 that approximates exp over the interval I.

Second, the CoqApprox library makes it possible to “combine” such Taylor models
according to some composite functions. Each operation +, −, ×, ÷, and ◦ (composition),
corresponds to a dedicated algorithm [14]. Note that for division, we currently handle a
function f

g as f × (inv ◦ g) (as in [14]) but a more efficient algorithm, based on Newton’s
method for example, could be formalized.

All these algorithms are proved correct with respect to the predicate (8). For instance,
the correctness lemma for TM_exp is as follows:

TM_exp_correct : ∀prec,x0,I,n,
x0 ⊆ I ∧ x0 , ∅ =⇒ exp ∈ �TM_exp(prec,x0,I,n)

�x0
I ,

and the correctness lemma for the addition of Taylor models is:

TM_add_correct : ∀prec,x0,I,TM f ,TMg , f ,g,

size(TM f) = size(TMg) =⇒
f ∈ �TM f

�x0
I ∧ g ∈ �TMg

�x0
I =⇒ f + g ∈ �TM_add(prec,TM f ,TMg)

�x0
I .

The hypothesis size(TM f) = size(TMg) makes it possible to simplify the implementation,
but it might seem overly restrictive. In practice though, when computing a univariate Taylor
model, all the intermediate polynomials have the same size. But this implementation choice
could be relaxed, by considering that the size of the polynomials is a kind of “precision”

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 21

parameter, which could be adapted during computation to increase the performance of the
Taylor model algorithms.

Regarding the implementation of basic functions in CoqApprox (
√·, exp, sin, etc.), we

aimed at factoring the algorithmic chain as much as possible, in order to increase the ex-
tensibility of the library. Roughly speaking, for computing a Taylor model (P,∆) for some
function f , we only have to implement two algorithms: an interval extension f of f (see Sec-
tion 3.3) and a formula relating the iterated derivatives of f (e.g. its differential equation).
Typically, this formula is expressed as a recurrence relation F such that, given t0 := f (x)
and tk := F (tk−1, k) for each integer k ≥ 1, we get tk = f (k) (x)/k! for all k ∈ N.

The Taylor model is then computed as follows. In order to compute P, the recurrence
that defines the Taylor coefficients (tk)k ∈N is “unrolled” by a dedicated function. And this
is performed using interval arithmetic (hence the boldface in what follows). To be more
specific, let us resume the example above of order-1 recurrence defined by F. Suppose we
want to compute interval enclosures of the Taylor coefficients around x up to order n. To
this aim, we pose t0 := f(x), then we rely on our higher-order function trec1 dedicated to
order-1 recurrences: to sum up, its type is “trec1 : (I→ N→ I) → I→ N→ I[X]” and it
suffices to evaluate trec1(F, t0,n) to obtain the polynomial

∑n
k=0 tkX k . Finally, in order to

compute ∆, we either use the Taylor–Lagrange inequality directly,12 or alternatively use the
algorithm called Zumkeller’s technique [17, Algorithm 1]. Both algorithms are implemented
in the form of Coq functions. It can be noted that the latter algorithm leads to sharp bounds,
as soon as it detects that the function x 7→ f (n+1) (x) has a constant sign over the interval I,
which is usually the case for the basic functions we are interested in. The formal verification
of this algorithm benefited from the pen-and-paper proof of Proposition 2.2.1 in Mioara
Joldeş’ thesis [14], which relies on Lemma 5.12 in Roland Zumkeller’s thesis [28].

4.3.3 Integration of CoqApprox into CoqInterval

Regarding the integration of CoqApprox into CoqInterval, Figure 3 provides a refined view
of the architecture that was presented in Figure 2. It is still simplified though, since the
CoqApprox package internally relies on several other modules. For more details, see [4].

CoqApprox is integrated into CoqInterval via the “UnivariateApprox” interface for ap-
proximating univariate expressions. This interface is a parameterized signature that depends
on an implementation of intervals (with respect to “IntervalOps”, see Section 2.2). It declares
an abstract data type T as well as a ternary relation A(I, t, f) that indicates if an object t of
type T is an approximation of function f over the interval I. It also declares abstract func-
tions to build approximations, starting from constants or identity, and combining existing
approximations by using an operation (addition, subtraction, multiplication, or division), an
elementary function (

√·, exp, sin, etc.), or the absolute value. For example, the correctness
claim for exp : (precision × N) → I→ T→ T is

exp_correct : ∀(u : precision × N) (I : I) (t : T) (f : R→ R),

A(I, t, f) =⇒ A(I, exp(u,I, t), exp ◦ f). (9)

12 Namely, we use this simple algorithm when computing a Taylor model for identity or constant functions,
as the estimation of the Taylor–Lagrange remainder is already sharp in this case.

22 Érik Martin-Dorel, Guillaume Melquiond

CoqInterval

CoqApprox

«interface»
IntervalOps

I : Type
zero : I

add(prec) : I→ I→ I
exp(prec) : I→ I

«interface»
UnivariateApprox

T : Type
U := precision × N

dummy : T
const : I→ T
var : T
exp : U→ I→ T→ T
abs : U→ I→ T→ T

TM (Taylor models)

«interface»
PolyBound

ComputeBound(prec) : I [X]→ I→ I

PolyBoundHorner PolyBoundHornerQuad

TaylorModel

TLrem (Taylor–Lagrange remainder)

Ztech (Zumkeller’s technique)

TM_add, TM_opp, TM_sub, TM_mul, TM_div, TM_comp

TM_any, TM_cst, TM_var, TM_exp, TM_power_int . . .

Fig. 3 Diagram (UML) that summarizes the architecture of the CoqApprox package w.r.t. CoqInterval.
The three kinds of arrows involved in the figure are:
A I if the module A is parameterized by a module that implements the interface I,
C I if the module C implements the interface I,
M C if the module M uses the module C.
For readability, we omit some arrows of the first kind when they simply result from transitivity, e.g. the
TaylorModel module depends not only on PolyBound, but also on IntervalOps.

The “UnivariateApprox” interface also declares a function eval to compute the range
of an expression from its approximation, with the following correctness claim:

eval_correct : ∀(u : precision × N) (I : I) (t : T) (f : R→ R),

A(I, t, f) =⇒ ∀(J : I) (x ∈ J), f (x) ∈ eval(u, t,I,J). (10)

The eval function takes two interval arguments I and J so that one can evaluate an
approximation that is valid on I over multiple subsets J ⊆ I. (Note that this constraint does
not appear in the type of eval_correct on purpose. The eval function will return ⊥I in
the case where J ! I, so that (10) will also hold in this case.) This additional flexibility,
however, is not currently used, since our interval/interval_intro tactics just call the
eval function with J := I.

Finally, an implementation of this interface “UnivariateApprox” is provided in the form
of a parameterized module “TM”, which takes as input an implementation of “IntervalOps”,
and which uses the CoqApprox algorithms. Specifically, it relies on the “TaylorModel” mod-
ule of CoqApprox, which in turn takes as input an implementation of the “IntervalOps” and
“PolyBound” interfaces. The function ComputeBound specified in “PolyBound” computes
an overestimation of the range of a polynomial over an interval. It is used for truncating
polynomials (in order to keep the order of Taylor models low when multiplying them) as
well as for computing Taylor models for expressions involving the composition of elemen-
tary functions.

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 23

Regarding the implementation of the abstract data type T in the “TM” module, we do
not directly use the type of Taylor models for efficiency reasons. Instead, we add three extra
constructors to handle some specific families of functions:

Inductive T := Dummy | Const of I | Var | Tm of
(
I[X] × I

)
.

The constructor Dummy represents any function f . As such, it is a capturing element of the
abstract data type T. Const represents a constant function with a value contained in the in-
terval argument, while Var represents the identity function. Both constructors Const and
Var make it possible to compute the Taylor models of some common expressions with-
out going through a full-blown composition of Taylor models. For instance, the expression
exp(x) is handled as exp ◦ id, as shown by property (9), yet it does not need an actual com-
position. Also, it may be noted that the interval argument x0 involved in the CoqApprox
algorithms does not occur in our “UnivariateApprox” interface. Indeed, the instantiation of
this argument is handled transparently to the user: we just take the point interval built upon
the midpoint of the interval I.

This does not appear on Figure 3 but the “UnivariateApprox” interface is generic with
respect to the way polynomial approximations are computed. So, in the future, it will be
possible to swap our Taylor model implementation with another implementation, such as
Chebyshev models [14, Chap. 4].

4.3.4 Shortcomings

One of the shortcomings of our implementation of automatic differentiation is that, when
computing the range of a sub-expression, we do not use the range of its derivative to refine
it. Taylor models suffer less from this specific issue, since the range of a sub-expression
only matters when applying an elementary function to a Taylor model. Yet we still need to
be able to compute the range of an expression from its Taylor model, if only for bounding
the final one when concluding the proof. Unfortunately, evaluating the polynomial part with
Horner’s rule tends to greatly overestimate the range of the function represented by a Taylor
model. Again, the culprit is the dependency effect. For instance, consider the polynomial x2.
Its interval evaluation will be performed as (1× x + 0) × x + 0, which amounts to computing
x × x. Let us see what happens for the input interval x = [−1,1]. (Due to the way Taylor
models are formalized, the polynomial is always evaluated on an interval centered at 0.) We
get [−1,1] while the actual range of the polynomial is just [0,1].

To avoid this issue, we have implemented a slightly better interval evaluation of polyno-
mials. The idea is to rewrite them to reduce the dependency effect [5]. We did not formalize
the whole method though; we only applied it to the quadratic part of the polynomials:

a0 + x · (a1 + x · (a2 + x · (. . .))) = a0 −
a2

1

4a2
+ a2 ·

(
x +

a1

2a2

)2

+ x3 · (. . .).

This algorithm has been formalized in the “PolyBoundHornerQuad” module that ap-
pears in Figure 3, while “PolyBoundHorner”, another implementation of the “PolyBound”
interface, corresponds to the Horner evaluation algorithm that was initially formalized in
CoqApprox.

If we assume that the higher-degree part of polynomials induces only negligible cor-
relations, this rewriting gives a tight enclosure while requiring a limited amount of extra
computation with respect to Horner’s rule (namely, the implementation of this polynomial
evaluation only requires seven extra interval operations per evaluation).

24 Érik Martin-Dorel, Guillaume Melquiond

On the benchmarks of Section 5, this algorithm leads to speed-ups for proving the har-
rison97, MT8, and MT9 problems, making the tactic up to twice faster. The impact on the
cos_cos problems is also noticeable; they are solved about 50% faster. On the other prob-
lems, there is still an overall gain, but it is less noticeable. There is an exception though:
using the naive Horner scheme, the rel_err_geodesic problem would be solved about 20%
faster than shown in Table 1.

5 Benchmarks

We have compared our tactic to the tools described in Section 1.2: Sollya [7], MetiTarski [1]
(through PVS’ metit strategy), NLCertify [2] (both with and without Coq verification), the
verify_ineq [25] and REAL_SOS [13] procedures for HOL Light, and the bernstein [23]
and interval [8] strategies for PVS. To perform the comparison, we have selected several
problems and tested whether they successfully verified them, and if so, how long it took to
prove them.

5.1 Selection of Some Reference Problems

Our selection of problems includes a few approximation problems taken from the literature
and/or from actual implementation:

– CRlibm exponential: |(x +0.5 · x2 +6004799504235417 ·2−55 · x3 +1501199876148417 ·
2−55 · x4 − exp x + 1)/(exp x − 1) | ≤ 2−62 when 2−20 ≤ |x | ≤ 355 · 2−22;

– square root [19]: | √x− (((((122/7397 · x−1733/13547) · x +529/1274) · x−767/999) ·
x + 407/334) · x + 227/925) | ≤ 5 · 2−16 when x ∈ [0.5,2];

– arctangent, with a tighter bound w.r.t. [8, p. 235]: | arctan x − (x −11184811/33554432 ·
x3 − 13421773/67108864 · x5)) | ≤ 5 · 2−28 when |x | ≤ 1/30;

– Earth’s radius of curvature [9,19]: ��(r (φ) − p((715/512)2 − φ2))/r (φ)�� ≤ 23 · 2−24 when
φ ∈ [0,715/512], with r (φ) = 6378137/

√
1 + (1 − 109/298257223563)2 · tan2 φ and

p(t) = 4439091/4 + t · (9023647/4 + t · (13868737/64 + x · (13233647/2048 + x ·
(−1898597/16384 + x · (−6661427/131072)))));

– Tang’s exponential [12,26]: |(exp x−1)−(x+8388676·2−24 ·x2+11184876·2−26 ·x3) | ≤
(23/27) · 2−33 when |x | ≤ 10831 · 10−6.

We have also crafted some increasingly-difficult approximation problems using polyno-
mial approximations with binary32 coefficients of f (x) = cos(1.5 · cos x) for x ∈ [−1,1/2].
The goal is to prove |(pn (x) − f (x))/ f (x) | ≤ Cn with n the degree of the approximation
between 2 and 8. The bounds are C2 = 57 ·2−10, C3 = 51 ·2−11, C4 = 51 ·2−14, C5 = 3 ·2−12,
C6 = 17 · 2−16, C7 = 25 · 2−19, and C8 = 5 · 2−20. The polynomial coefficients are easily
obtained by running the following Sollya command, so they will not be reproduced here:
fpminimax(f , n, [|SG...|], [-1;1/2], relative).

We have also selected a few polynomial problems that have been recurrently used for
testing tools [23,25]. While multivariate (up to 7 variables), they fit into our definition of
quasi-multivariate expressions and thus were a sensible choice:

– 3-variable reaction diffusion: −36.7126907 ≤ −x1+2·x2−x3−0.835634534·x2 · (1+x2)
when x1, x2, x3 ∈ [−5,5];

– adaptive Lotka-Volterra system: −20.801 ≤ x1 · x2
2 + x1 · x2

3 + x1 · x2
4 − 1.1 · x1 + 1 when

x1, x2, x3, x4 ∈ [−2,2];

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 25

– Butcher’s problem: −1.44 ≤ x6 · x2
2 + x5 · x2

3 − x1 · x2
4 + x3

4 + x2
4 − x1/3 + 4/3 · x4 when

x1 ∈ [−1,0], x2 ∈ [−0.1,0.9], x3 ∈ [−0.1,0.5], x4 ∈ [−1,−0.1], x5 ∈ [−0.1,−0.05],
x6 ∈ [−0.1,−0.03];

– magnetism: −0.25001 ≤ x2
1 + 2 · x2

2 + 2 · x2
3 + 2 · x2

4 + 2 · x2
5 + 2 · x2

6 + 2 · x2
7 − x1 when

x1, . . . , x7 ∈ [−1,1].

Finally, we have selected some univariate problems that are not approximation problems.
They were originally designed for MetiTarski [1]. Note that some problem statements had
to be slightly modified so as to accommodate as many systems as possible. First, the bounds
of all the inputs have to be finite and closed. So bounds that were originally infinite were
replaced by ±10, while open bounds were modified by ε = 2−10 so that they could be closed.
Second, in order for numerical solvers to succeed, there must be a gap large enough between
both sides of an inequality. So, whenever both sides could be equal for some inputs, ε was
added to one of them to make them disjoint. For instance, the original version of the first
problem is 2 |x | /(2+x) ≤ |ln(1 + x) | when x > −1, so it exhibits all of these issues: its input
x has an open lower bound, it has an infinite upper bound, and both sides of the inequality
are equal when x = 0.

– MT1: 2 |x | /(2 + x) ≤ |ln(1 + x) | + ε when x ∈ [−1 + ε,10];
– MT2: |ln(1 + x) | ≤ − ln(1 − |x |) + ε when x ∈ [−1 + ε,1 − ε];
– MT3: |x | /(1 + |x |) ≤ |ln(1 + x) | + ε when x ∈ [−1 + ε,1];
– MT4: |ln(1 + x) | ≤ |x | (1 + |x |)/ |1 + x | + ε when x ∈ [−1 + ε,1];
– MT5: |x | /4 < ��exp x − 1�� when x ∈ [−1,1] \ (−ε,ε);
– MT6: ��exp x − 1�� < 7 |x | /4 when x ∈ [−1,1] \ (−ε,ε);
– MT7: ��exp x − 1�� ≤ exp |x | − 1 when x ∈ [−10,−ε];
– MT8: ��exp x − (1 + x)�� ≤ ��exp |x | − (1 + |x |)�� when x ∈ [−10,−ε];
– MT9: ��exp x − (1 + x/2)2�� ≤ ��exp |x | − (1 + |x | /2)2�� when x ∈ [−10,−ε];
– MT10: 2x/(2 + x) ≤ ln(1 + x) + ε when x ∈ [0,10];
– MT11: x/

√
1 + x ≤ ln(1 + x) + ε when x ∈ [−1/3,0];

– MT12: ln ((1 + x)/x) ≤ (12x2 + 12x + 1)/(12x3 + 18x2 + 6x) when x ∈ [1/3,10];
– MT13: ln ((1 + x)/x) ≤ 1/

√
x2 + x when x ∈ [1/3,10];

– MT14: exp(x − x2) ≤ 1 + x + ε when x ∈ [0,1];
– MT15: exp(−x/(1 − x)) ≤ 1 − x + ε when x ∈ [−10,1/2];
– MT16: |sin x | ≤ 6/5 · |x | + ε when x ∈ [−1,1];
– MT17: 1 − 2x < cos(π · x) when x ∈ [ε,100/201];
– MT18: 0 ≤ cos x − 1 + x2/2 + ε when x ∈ [−10,10];
– MT19: 8

√
3 · x/(3

√
3 +
√

75 + 80x2) ≤ arctan x + ε when x ∈ [0,10];
– MT20: 1 < (x + 1/x) · arctan x when x ∈ [ε,10];
– MT21: 3x/(1 + 2

√
1 + x2) ≤ arctan x + ε when x ∈ [0,10];

– MT22: cos x ≤ sin x/x when x ∈ [ε,π];
– MT23: cos x < (sin x/x)2 when x ∈ [ε,π/2];
– MT24: 0 < sin x/3 + sin(3x)/6 when x ∈ [π/3,2π/3 − ε];
– MT25: 12−14.2 ·exp(−0.318 · x)+ (3.25 ·cos(1.16 · x)−0.155 ·sin(1.16 · x)) ·exp(−1.34 ·

x) > 0 when x ∈ [0,2].

5.2 Experimental Results

For the experiments conducted within the PVS proof assistant, we have been using the
ProofLite package by César Muñoz to perform the proofs in batch mode. These PVS

26 Érik Martin-Dorel, Guillaume Melquiond

proofs have been performed by using one of the following strategies: bernstein (with
PVS 5.0), interval (with PVS 6.0), and metit (with PVS 6.0 and MetiTarski 2.2). See
Section 1.2 for more details and references.

As the HOL Light/verify_ineq decision procedure handles goals that are strict in-
equalities and supports sin, cos, but not tan, we manually adapted our reference problems to
fit in this setting. We also rephrased some statements to remove the absolute value whenever
possible. Still, some of our reference problems cannot be handled by the tool: this includes
inequalities involving unsupported functions such as exp. The procedure was configured to
perform computations with numbers using 5 radix-200 digits, as in [25]; this amounts to a
precision of about 37 bits. The MT23 problem needed a slightly larger precision to be solved
though, about 44 bits.

Table 1 shows the CPU time for proving our selection of problems. For these bench-
marks, we have used a desktop computer running Ubuntu 14.04.2 LTS on an Intel Core
i5-4460S CPU clocked at 2.90 GHz, along with the following tools: Coq 8.4pl6 and CoqIn-
terval 2.0.0, Sollya 4.1, PVS 5.0 (for the Bernstein strategy), PVS 6.0 and nasalib 6.0.9 (for
the PVS/interval and metit strategies), MetiTarski 2.2 and Z3 4.3.1 (bundled with nasalib
6.0.9), as well as development versions of HOL Light13 (rev. 196) as well as of flyspeck/
formal_ineqs14 (rev. 3660) and NLCertify15 (commit 9e85404). Regarding the compilers
and the support libraries required for these benchmarks, we have been using the following
versions: gcc 4.8.4 for x86_64-linux-gnu, OCaml 4.01.0, Camlp5 6.13 (but HOL Light re-
lied on Camlp5 6.11), Flocq 2.4.0, Math-Comp 1.5.0, CSDP 6.1.1, GMP 5.1.3, MPFR 3.1.2,
MPFI 1.5.1, fpLLL 4.0.4, BLAS 1.2.20110419, ATLAS 3.10.1, LAPACK 3.5.0, SDPA
7.3.9, MUMPS 4.10.0, OPAM 1.2.2, Zarith 1.3, LACAML 7.2.6. For systems that have
no time limit per se, and may not terminate on some examples of our test suite, we have
been setting up a timeout. For all systems, a timeout reported in the table means that they
did not succeed after 180 seconds of computations.

Let us give a bit of information about the missing results first. Both PVS/Bernstein and
HOL Light/REAL_SOS only handle polynomial systems, which explains why most of their
columns are empty. HOL Light/verify_ineq and NLCertify were designed to tackle the
inequalities from the Flyspeck project, so they have no support for functions such as exp.
This explains the missing results for most of the tests extracted from MetiTarski [1].

The failure of MetiTarski on its own test might seem surprising. Yet in MetiTarski’s
testsuite,16 MT19 is documented as “probably not provable”, due to the “square root ap-
proximation degrading for large inputs”. So it is not clear whether it is supposed to pass.

Regarding the parameters of CoqInterval, most tests pass with the default floating-point
precision of 30 bits or by increasing it a bit to 40 bits. There are few exceptions though. The
most notable one is the first test, which verifies the approximation used by CRlibm. Indeed,
since it approximates the function with an accuracy of 62 bits, it is impossible to prove it
with a precision lower than that, as shown in Figure 1. As a matter of fact, we had to ask for
90 bits of precision, for the proof to successfully go through.

When using Taylor models, we never had to use degrees higher than 5. As explained
in Section 4.3.4, we are not yet able to fully extract the information contained in high-
degree polynomials, so they would not speed up the bisection process anyway. The tests that

13 https://code.google.com/p/hol-light/

14 https://code.google.com/p/flyspeck/source/browse/#svn/trunk/formal_ineqs

15 http://forge.ocamlcore.org/projects/nl-certify

16 https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/
atan-problem-1-sqrt.tptp

https://code.google.com/p/hol-light/
https://code.google.com/p/flyspeck/source/browse/#svn/trunk/formal_ineqs
http://forge.ocamlcore.org/projects/nl-certify
https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/atan-problem-1-sqrt.tptp
https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/atan-problem-1-sqrt.tptp

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 27

Problems C
oq

In
te

rv
al

So
lly

a

M
et

iT
ar

sk
i

N
L

C
er

tif
y

(n
ot

ve
ri

fie
d)

N
L

C
er

tif
y

(p
ar

tly
ve

ri
fie

d)

PV
S/

in
te

rv
al

H
O

L
L

ig
ht

/

v
e
r
i
f
y
_
i
n
e
q

PV
S/

B
er

ns
te

in

H
O

L
L

ig
ht

/

R
E
A
L
_
S
O
S

crlibm_exp 0.83? 0.02 Failed - - Failed - - -
remez_sqrt 0.45 0.02 0.05 15.28? Timeout Failed 3.60? - -
abs_err_atan 0.45 0.01 0.07 Failed Failed Timeout 2.36? - -
rel_err_geodesic 3.10 2.24 Timeout Timeout Timeout Failed 229.54? - -
harrison97 0.42 0.01 0.10 - - Failed - - -

cos_cos_d2 0.71 0.05 Timeout Timeout Timeout 20.64 5.82? - -
cos_cos_d3 0.79 0.05 Timeout Timeout Timeout 48.87 6.28? - -
cos_cos_d4 0.91 0.06 Timeout Timeout Timeout Timeout 8.83? - -
cos_cos_d5 1.44 0.06 Timeout Timeout Timeout Timeout 15.70? - -
cos_cos_d6 1.54 0.07 Timeout Timeout Timeout Timeout 20.92? - -
cos_cos_d7 2.21 0.07 Timeout Timeout Timeout Timeout 41.88? - -
cos_cos_d8 2.79 0.08 Timeout Timeout Timeout Timeout 87.78? - -

MT1 0.53 - 0.13 - - Failed - - -
MT2 1.56 - 0.06 9.99? Timeout Failed - - -
MT3 0.18 - 0.18 - - 1.14 - - -
MT4 0.23 - 0.17 1.31? 18.95? 1.19 - - -
MT5 0.11? - 0.05 - - 1.24 - - -
MT6 0.15? - 0.07 - - 1.23 - - -
MT7 0.04 - 0.04 - - 0.69 - - -
MT8 0.33 - 0.15 - - Timeout - - -
MT9 0.52 - 0.46 - - Timeout - - -
MT10 0.19 - 0.04 0.96 14.86 Failed - - -
MT11 0.10 - 0.22 0.40 6.73 1.72 - - -
MT12 2.84 - 0.07 Timeout Timeout Timeout - - -
MT13 0.98 - 0.07 11.82 137.91 Failed - - -
MT14 0.07 - 0.06 - - 0.89 - - -
MT15 0.15 - 0.07 - - 0.98 - - -
MT16 0.13 - 0.02 0.58? 8.23? 3.23 0.57? - -
MT17 0.11 - 0.06 0.22 4.06 1.27 0.23 - -
MT18 0.16 - 0.02 0.21 2.46 0.69 0.75 - -
MT19 0.52 - Failed 5.09 74.55 Failed 1.92 - -
MT20 3.09 - 0.05 2.63 44.21 Timeout 15.54 - -
MT21 0.33 - 0.38 3.69 51.94 Failed 1.37 - -
MT22 0.69 - 0.06 Timeout Timeout Failed 113.74 - -
MT23 1.17 - 0.12 Failed Failed Failed 86.90 - -
MT24 0.10 - 0.36 0.17 2.38 Failed 0.24 - -
MT25 0.29 - 0.17 - - 1.78 - - -

RD 0.25 - 0.02 1.88 66.01 1.67 0.48 3.26 Timeout
adaptiveLV 0.16 - 0.04 0.23 3.18 1.00 1.26 4.02 3.78
butcher 0.42 - 0.05 0.73 11.08 19.99 2.21 18.23 Timeout
magnetism 0.17 - 0.05 1.35 20.60 Timeout 313.75 Timeout 0.24

Table 1 CPU time (in seconds) for proving the selected problems. Timeout indicates that the prover did not
terminate under 180s. Failed indicates that it terminated but did not succeed in proving a problem. When
some result is followed by a star, it means that the problem has been split into several sub-problems, and the
given timing is the total CPU time for proving them. For example, this is the case when the input domain is
not connected (e.g. for MT5, it is [−1, −ε] ∪ [ε, 1]), or when some inequality with absolute values has been
rephrased into a conjunction of inequalities. Regarding the PVS results, we do not include the proof time for
the Type Correctness Conditions (TCCs) that are generated when proving the considered problems.

28 Érik Martin-Dorel, Guillaume Melquiond

benefited from using a degree-5 polynomial are crlibm_exp, rel_err_geodesic, MT22, and
MT23.

Regarding approximation errors, the only tools able to check them are Sollya, CoqIn-
terval, and HOL Light/verify_ineq. Theoretically, PVS/interval should also be able to
handle them, but due to the dependency effect, it cannot succeed in a reasonable amount of
time. As for MetiTarski, it cannot prove more than what its predefined axioms allow, and
thus cannot be used as a general tool for verifying approximation errors. As for performance,
CoqInterval is much faster than verify_ineq on the most complicated examples, since it is
not restricted to order-1 Taylor approximations. It is much slower than Sollya though, but its
results are formally verified by Coq. Note that the advanced algorithms of Sollya fail on the
rel_err_geodesic test and we had to fall back to checkinfnorm for that specific test, which
is a rather slow algorithm.

On the tests extracted from MetiTarski, CoqInterval does not perform as well as Meti-
Tarski. The comparison is not that unfavorable though, when one keeps in mind that all the
results are formally verified by Coq. The column for PVS/interval gives us some clues as to
which problems are simple enough to be handled by naive interval arithmetic.

It should be noted that, while all the problems of this category have bounded inputs, Coq-
Interval is able to prove some of the original problems with unbounded inputs. For instance,
automatic differentiation has no difficulty with the unbounded versions of MT7, MT18, and
MT20. For MT8 to go through with an unbounded domain, the user has to manually remove
some absolute values beforehand. MT15 can also be proved with an infinite lower bound,
as long as the user rewrites x/(1 − x) into 1/(1/x − 1). A similar transformation makes
it possible to prove MT19 and MT21. The running time of these seven problems is hardly
changed when going from the bounded versions to the unbounded versions.

Finally, the quasi-multivariate problems show that CoqInterval can quite easily handle
them. It also shows that some multivariate solvers would benefit from heuristics for detecting
quasi-multivariate problems. For instance, the “magnetism” problem can be easily solved,
once one has noticed that only x1 matters.

6 Conclusion

6.1 Summary

This paper has presented a tactic for the Coq proof assistant that is designed to automati-
cally and formally verify numerical bounds on univariate or quasi-multivariate expressions.
While the original CoqInterval package was already designed for that purpose, it was not
powerful enough to tackle bounds on approximation errors. Indeed, its approach was based
on order-0 Taylor–Lagrange approximations, which would cause an explosion of the num-
ber of subdomains to verify for the harder cases. Using Taylor models instead, the execution
time is sufficiently reduced for the tactic to become usable when verifying mathematical
libraries.

Our approach is fully reflexive; starting from a representation of the real-valued expres-
sion, it numerically computes some bounds of it. The tactic does not depend on an external
oracle that would generate certificates that the prover would check. Instead, all the numeri-
cal computations are performed inside the logic of Coq and are proved correct. In fact, one
could extract the code from our tactic and build a native tool independent from Coq.

Let us summarize how our approach compares to the other tools. First, it only han-
dles univariate and quasi-multivariate expressions, while Sollya [7] only supports univari-

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 29

ate expressions and all the other tools are meant to support truly multivariate expressions.
It supports some elementary functions, contrarily to REAL_SOS for HOL Light [13] and
bernstein for PVS [23]. It is restricted to the universally-quantified fragment, while Meti-
Tarski [1] can tackle more intricate problems. (To a lesser extent, bernstein can also han-
dle a wider range of problems.) Its computations are performed inside the logic of a proof
system, contrarily to MetiTarski, Sollya, and to a lesser extent the PVS strategies. It performs
numerical computations using floating-point arithmetic, as do Sollya and the verify_ineq
procedure for HOL Light [25], while all the other tools use rational arithmetic.

Finally, if we exclude the tools that only support polynomial systems, the main differ-
ence between the remaining tools is whether they focus on univariate or multivariate ex-
pressions. Indeed, in the multivariate case, the size of Taylor-like approximations grow ex-
ponentially with the order, while they grow only linearly in the univariate case. This partly
explains why HOL Light/verify_ineq and NLCertify manipulate only degree-2 polyno-
mials as approximations. Unfortunately, this low degree is not sufficient to tackle the kind
of proofs required when verifying mathematical libraries, since it leads to a large number of
subdivisions in that case.

6.2 Perspectives

While CoqInterval has now reached the point where it can formally prove some of the
bounds that appear when verifying a floating-point mathematical library, there is still work
to be done. First of all, additional floating-point approximations of mathematical functions
should be formalized. Unfortunately, implementing efficient approximations is still a costly
process that involves lots of custom code and proofs. It would be better to get a more generic
way of formalizing floating-point approximations. A promising approach is to automatically
derive implementations from the differential equation of a function.

Another part that could be improved in CoqInterval is the interface between the floating-
point formalization and the interval one. Indeed, it leaks numerous implementation details
about the floating-point operations, e.g. the unbounded range of exponent, while the interval
operations should only care about inequalities such as 5(u + v) ≤ u + v ≤ 4(u + v). As
a consequence, one cannot blindly replace a floating-point implementation by another. For
instance, using a library like MPFR or the floating-point unit of the processor for improved
performance would invalidate all the proofs by breaking some assumptions.

Finally and more importantly, some work has to be done in bridging the gap between
the univariate approaches and the multivariate ones. Multivariate methods obviously handle
a larger spectrum of problems, but they are quite inefficient when it comes to univariate
problems coming from the verification of approximation bounds for mathematical libraries.

Acknowledgements We would like to thank the people from the ANR TaMaDi project for initiating and
greatly contributing to the CoqApprox project.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special func-
tions. Journal of Automated Reasoning 44(3), 175–205 (2010). DOI 10.1007/s10817-009-9149-2

2. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of bounds of non-linear functions:
The templates method. In: J. Carette, D. Aspinall, C. Lange, P. Sojka, W. Windsteiger (eds.) Intelli-
gent Computer Mathematics - MKM, Calculemus, DML, and Systems and Projects, Lecture Notes in
Computer Science, vol. 7961, pp. 51–65 (2013). DOI 10.1007/978-3-642-39320-4_4

30 Érik Martin-Dorel, Guillaume Melquiond

3. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point algorithms in Coq. In:
E. Antelo, D. Hough, P. Ienne (eds.) Proceedings of the 20th IEEE Symposium on Computer Arithmetic,
pp. 243–252. Tübingen, Germany (2011). DOI 10.1109/ARITH.2011.40

4. Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.M., Paşca, I., Rideau, L., Théry,
L.: Rigorous polynomial approximation using Taylor models in Coq. In: A. Goodloe, S. Person (eds.)
Proceedings of 4th International Symposium on NASA Formal Methods, Lecture Notes in Computer
Science, vol. 7226, pp. 85–99. Springer, Norfolk, Virginia (2012). DOI 10.1007/978-3-642-28891-3_9

5. Ceberio, M., Granvilliers, L.: Horner’s rule for interval evaluation revisited. Computing 69(1), 51–81
(2002). DOI 10.1007/s00607-002-1448-y

6. Chevillard, S., Harrison, J., Joldeş, M., Lauter, C.: Efficient and accurate computation of upper bounds
of approximation errors. Journal of Theoretical Computer Science 412(16), 1523–1543 (2011). DOI
10.1016/j.tcs.2010.11.052

7. Chevillard, S., Joldeş, M., Lauter, C.: Sollya: An environment for the development of numerical codes.
In: K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (eds.) Proceedings of the 3rd International
Congress on Mathematical Software, Lecture Notes in Computer Science, vol. 6327, pp. 28–31. Heidel-
berg, Germany (2010)

8. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic.
IEEE Transactions on Computers 58(2), 226–237 (2009)

9. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: P. Montuschi,
E. Schwarz (eds.) Proceedings of the 17th IEEE Symposium on Computer Arithmetic, pp. 188–195.
Cape Cod, MA, USA (2005). DOI 10.1109/ARITH.2005.25

10. Denman, W., Muñoz, C.: Automated real proving in PVS via MetiTarski. In: C.B. Jones, P. Pihlajasaari,
J. Sun (eds.) FM, Lecture Notes in Computer Science, vol. 8442, pp. 194–199. Springer (2014). DOI
10.1007/978-3-319-06410-9_14

11. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis: Revised And Expanded. Mono-
graphs and textbooks in pure and applied mathematics. CRC Press (2003)

12. Harrison, J.: Verifying the accuracy of polynomial approximations in HOL. In: E.L. Gunter, A.P. Felty
(eds.) Proceedings of the 10th International Conference on Theorem Proving in Higher Order Logics,
Lecture Notes in Computer Science, vol. 1275, pp. 137–152. Murray Hill, NJ, USA (1997). DOI 10.
1007/BFb0028391

13. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: K. Schneider, J. Brandt (eds.)
Proceedings of the 20th International Conference on Theorem Proving in Higher Order Logics, Lecture
Notes in Computer Science, vol. 4732, pp. 102–118. Kaiserslautern, Germany (2007)

14. Joldeş, M.: Rigorous Polynomial Approximations and applications. Ph.D. thesis, ENS de Lyon, France
(2011). URL http://tel.archives-ouvertes.fr/tel-00657843/en/

15. Makino, K.: Rigorous analysis of nonlinear motion in particle accelerators. Ph.D. thesis, Michigan State
University, East Lansing, Michigan, USA (1998)

16. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. International
Journal of Pure and Applied Mathematics 4(4), 379–456 (2003)

17. Martin-Dorel, É., Mayero, M., Paşca, I., Rideau, L., Théry, L.: Certified, efficient and sharp univariate
Taylor models in Coq. In: SYNASC 2013, pp. 193–200. IEEE, Timişoara, Romania (2013). DOI
10.1109/SYNASC.2013.33

18. Melquiond, G.: Floating-point arithmetic in the Coq system. In: Proceedings of the 8th Conference on
Real Numbers and Computers, pp. 93–102. Santiago de Compostela, Spain (2008)

19. Melquiond, G.: Proving bounds on real-valued functions with computations. In: A. Armando, P. Baum-
gartner, G. Dowek (eds.) Proceedings of the 4th International Joint Conference on Automated Rea-
soning, Lecture Notes in Artificial Intelligence, vol. 5195, pp. 2–17. Sydney, Australia (2008). DOI
10.1007/978-3-540-71070-7_2

20. Melquiond, G.: Floating-point arithmetic in the Coq system. Information and Computation 216, 14–23
(2012). DOI 10.1016/j.ic.2011.09.005

21. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
22. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N.,

Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston (2010). DOI 10.1007/

978-0-8176-4705-6
23. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and appli-

cations to global optimization. Journal of Automated Reasoning 51(2), 151–196 (2013). DOI
10.1007/s10817-012-9256-3

24. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for global optimization. In:
E. Cohen, A. Rybalchenko (eds.) Proceedings of the 5th International Conference on Verified Software:
Theories, Tools, Experiments, Lecture Notes in Computer Science, vol. 8164, pp. 326–343. Menlo Park,
CA, USA (2013). DOI 10.1007/978-3-642-54108-7_17

http://tel.archives-ouvertes.fr/tel-00657843/en/

Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq 31

25. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor interval approxima-
tions. In: G. Brat, N. Rungta, A. Venet (eds.) Proceedings of the 5th International Symposium on NASA
Formal Methods, Lecture Notes in Computer Science, vol. 7871, pp. 383–397. Moffett Field, CA, USA
(2013). DOI 10.1007/978-3-642-38088-4_26

26. Tang, P.T.P.: Table-driven implementation of the exponential function in IEEE floating-point arithmetic.
ACM Transactions on Mathematical Software 15(2), 144–157 (1989). DOI 10.1145/63522.214389

27. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM
Transactions on Mathematical Software 17(3), 410–423 (1991). DOI 10.1145/114697.116813

28. Zumkeller, R.: Global Optimization in Type Theory. Ph.D. thesis, École polytechnique, France (2008).
URL http://alacave.net/~roland/FormalGlobalOpt.pdf

http://alacave.net/~roland/FormalGlobalOpt.pdf

	1 Introduction
	1.1 Background and Scope
	1.2 Related Works
	1.3 Content

	2 The interval and interval_intro Tactics
	2.1 Preliminaries About Interval Arithmetic
	2.2 Architecture of CoqInterval
	2.3 Reification and Reflection

	3 Arithmetic Computations Inside Coq
	3.1 Floating-point Operators
	3.2 Interval Operators
	3.3 Elementary Functions

	4 Reducing the Dependency Effect
	4.1 Bisection
	4.2 Automatic Differentiation
	4.3 Taylor Models
	4.3.1 Preliminaries About Taylor models
	4.3.2 Main Features of the CoqApprox Formalization
	4.3.3 Integration of CoqApprox into CoqInterval
	4.3.4 Shortcomings

	5 Benchmarks
	5.1 Selection of Some Reference Problems
	5.2 Experimental Results

	6 Conclusion
	6.1 Summary
	6.2 Perspectives

