We investigate the influences of the excluded volume of molecules on
biochemical reaction processes on 2-dimensional surfaces using a model of
signal transduction processes on biomembranes. We perform simulations of the
2-dimensional cell-based model, which describes the reactions and diffusion of
the receptors, signaling proteins, target proteins, and crowders on the cell
membrane. The signaling proteins are activated by receptors, and these
activated signaling proteins activate target proteins that bind autonomously
from the cytoplasm to the membrane, and unbind from the membrane if activated.
If the target proteins bind frequently, the volume fraction of molecules on the
membrane becomes so large that the excluded volume of the molecules for the
reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the
signal flow, defined as the activation frequency of target proteins, as
follows. With an increase in the binding rate of target proteins, the signal
flow varies by i) monotonically increasing; ii) increasing then decreasing in a
bell-shaped curve; or iii) increasing, decreasing, then increasing in an
S-shaped curve. We further demonstrate that the excluded volume of molecules
influences the hierarchical molecular distributions throughout the reaction
processes. In particular, when the system exhibits a large signal flow, the
signaling proteins tend to surround the receptors to form receptor-signaling
protein clusters, and the target proteins tend to become distributed around
such clusters. To explain these phenomena, we analyze the stochastic model of
the local motions of molecules around the receptor.Comment: 31 pages, 10 figure