521 research outputs found

    Laboratories, laws, and the career of a commodity

    Get PDF
    Unlike most foods, milk is produced fresh at least twice every day, thus recreating, over 700 times a year, a commodity ‘designed’ by the combination of nature, commerce, and law. The paper is a study of the ontogenesis of this commodity in Britain since 1800, stressing the emergence of two new objectivities: dairy science and the law on adulteration. In the words of Christopher Hamlin, what mattered was the “manufacture of certainty, however flimsy that certainty might later be shown to be.'' This was achieved by the collection of samples, the generation of facts by the deployment of the laboratory technologies of physics and chemistry, and a semimonopoly over the truth-power of dairy science that was gradually built up by the large commercial companies. A foundation of state-sponsored regulation provided an official legitimation of compositional standards that suited the interests of capital but ignored ‘natural’ variations in quality and often pilloried innocent producers. The public eventually became accustomed to the regulated quality of the milk in its ‘pinta’ and assumed it to be natural. Even the standardization of composition since 1993 has caused very little disquiet among the consuming public, although milk is now a fully constructed commodity like any other dairy product. Mechanical modernity has at last triumphed over a century of ‘milk as it came from the cow’

    The SEURAT-1 Approach towards Animal Free Human Safety Assessment

    Get PDF
    SEURAT-1 is a European public-private research consortium that is working towards animal-free testing of chemical compounds and the highest level of consumer protection. A research strategy was formulated based on the guiding principle to adopt a toxicological mode-of-action framework to describe how any substance may adversely affect human health. The proof of the initiative will be in demonstrating the applicability of the concepts on which SEURAT-1 is built on three levels: (i) Theoretical prototypes for adverse outcome pathways are formulated based on knowledge already available in the scientific literature on investigating the toxicological modes-of-action leading to adverse outcomes (addressing mainly liver toxicity); (ii) adverse outcome pathway descriptions are used as a guide for the formulation of case studies to further elucidate the theoretical model and to develop integrated testing strategies for the prediction of certain toxicological effects (i.e., those related to the adverse outcome pathway descriptions); (iii) further case studies target the application of knowledge gained within SEURAT-1 in the context of safety assessment. The ultimate goal would be to perform ab initio predictions based on a complete understanding of toxicological mechanisms. In the near-term, it is more realistic that data from innovative testing methods will support read-across arguments. Both scenarios are addressed with case studies for improved safety assessment. A conceptual framework for a rational integrated assessment strategy emerged from designing the case studies and is discussed in the context of international developments focusing on alternative approaches for evaluating chemicals using the new 21st century tools for toxicity testing

    Critical animal and media studies: Expanding the understanding of oppression in communication research

    No full text
    Critical and communication studies have traditionally neglected the oppression conducted by humans towards other animals. However, our (mis)treatment of other animals is the result of public consent supported by a morally speciesist-anthropocentric system of values. Speciesism or anthroparchy, as much as any other mainstream ideologies, feeds the media and at the same time is perpetuated by them. The goal of this article is to remedy this neglect by introducing the subdiscipline of Critical Animal and Media Studies. Critical Animal and Media Studies takes inspiration both from critical animal studies – which is so far the most consolidated critical field of research in the social sciences addressing our exploitation of other animals – and from the normative-moral stance rooted in the cornerstones of traditional critical media studies. The authors argue that the Critical Animal and Media Studies approach is an unavoidable step forward for critical media and communication studies to engage with the expanded circle of concerns of contemporary ethical thinking

    Unknown Quantum States: The Quantum de Finetti Representation

    Full text link
    We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti's classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an ``unknown quantum state'' in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than states of nature. We further demonstrate that the theorem fails for real Hilbert spaces and discuss the significance of this point.Comment: 30 pages, 2 figure

    A mode-of-action ontology model for safety evaluation of chemicals: outcome of a series of workshops on repeated dose toxicity

    Get PDF
    Repeated dose toxicity evaluation aims at assessing the occurrence of adverse effects following chronic or repeated exposure to chemicals. Non-animal approaches have gained importance in the last decades because of ethical considerations as well as due to scientific reasons calling for more human-based strategies. A critical aspect of this challenge is linked to the capacity to cover a comprehensive set of interdependent mechanisms of action, link them to adverse effects and interpret their probability to be triggered in the light of the exposure at the (sub)cellular level. Inherent to its structured nature, an ontology addressing repeated dose toxicity could be a scientific and transparent way to achieve this goal. Additionally, repeated dose toxicity evaluation through the use of a harmonized ontology should be performed in a reproducible and consistent manner, while mimicking as accurately as possible human physiology and adaptivity. In this paper, the outcome of a series of workshops organized by Cosmetics Europe on this topic is reported. As such, this manuscript shows how experts set critical elements and ways of establishing a mode-of-action ontology model as a support to risk assessors aiming to perform animal-free safety evaluation of chemicals based on repeated dose toxicity data

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Design of a Microsphere-Based High-Throughput Gene Expression Assay to Determine Estrogenic Potential

    Get PDF
    Recently gene expression studies have been multiplied at an accelerated rate by the use of high-density microarrays. By assaying thousands of transcripts at a time, microarrays have led to the discovery of dozens of genes involved in particular biochemical processes, for example, the response of a tissue/organ to a given chemical with therapeutic or toxic properties. The next step in these studies is to focus on the response of a subset of relevant genes to verify or refine potential therapeutic or toxic properties. We have developed a sensitive, high-throughput gene expression assay for this purpose. In this assay, based on the Luminex xMAP system, carefully selected oligonucleotides were covalently linked to fluorescently coded microspheres that are hybridized to biotinylated cRNA followed by amplification of the signal, which results in a rapid, sensitive, multiplexed assay platform. Using this system, we have developed an RNA expression profiling assay specific for 17 estrogen-responsive transcripts and three controls. This assay can evaluate up to 100 distinct analytes simultaneously in a single sample, in a 96-well plate format. This system has improved sensitivity versus existing microsphere-based assays and has sensitivity and precision comparable with or better than microarray technology. We have achieved detection levels down to 1 amol, detecting rare messages in complex cRNA samples, using as little as 2.5 μg starting cRNA. This assay offers increased throughput with decreased costs compared with existing microarray technologies, with the trade-off being in the total number of transcripts that can be analyzed
    corecore