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From Instrument to Architecture: Environmental Models as Contemporary Design Tools 

Abstract: This paper revisits a case study in the history of building technology, Étienne-Jules 

Marey’s 1900-1902 wind tunnel prototypes, and makes links between Marey’s wind tunnel and 

the prototyping of environmental models as environmental design tools today. Using 

historiographic research and physical prototypes, the research asks: What insights about 

designing with airflow do Étienne-Jules Marey’s wind tunnel and contemporary environmental 

models offer architectural designers today? Insights are explored in relation to three measures: 

Marey’s wind tunnel photographs measure air flow rates; the wind tunnel measures air’s material 

sensitivity; in the author’s prototypes, air and water become measures of constructional defects, 

suggesting a tectonic approach to architecture. The significance of the research lies in situating a 

technique exemplified by Marey within a contemporary architectural design context. 

Keywords: Environmental Design, History and Theory of Building Technology, Physical 

Models, Building Ventilation 

1 Introduction 

Architects require technical, representational, and conceptual tools to design in a way that 

is highly responsive to air movement. Skillful design of airflow can lead to effective ventilation 

strategies, to enhanced exterior microclimates, to reduced building air infiltration, to reduced 

urban wind tunneling and downward vortex effects--all of which can reduce energy consumption 

and/or increase thermal comfort. Increased disciplinary specialization, the complexity of fluid 



dynamics, and representational limitations, however, present current obstacles to this agenda. 

Hight clarifies what is at stake: “The architect’s ability to manipulate environmental conditions 

has been limited by the discipline’s tools themselves, which require either cumbersome technical 

simulations of fluid dynamics or notational rules of thumb...To engage such processes requires 

expanding our mindset and toolkit to make knowable such nonvisual phenomena objects” (2009, 

26). Representing environmental phenomena is crucial to being able to engage with them as 

design variables. As Hight notes, however, architects have struggled to represent such 

environmental conditions due to their thermodynamic and fluid dynamic complexity. Drawn 

environmental sections and computational fluid dynamics (cfd) are two representational 

conventions used by designers to represent airflow and thermal exchange. This paper explores a 

third strategy—using physical environmental models—for making ‘knowable’ the ‘nonvisual 

phenomena object’ of airflow. This research revisits a historical model that measured 

environmental flows to inform new ways of working with air and water as material conditions 

and suggests a methodology in which these material conditions inform the design of architecture 

as an environmental instrument. 

In this paper, the term ‘environmental model’ refers to a physical instrument consisting 

of a controlled environment that materialises the phenomena of airflow in relation to a scaled 

architectural model. Environmental models have conventionally been used as quantitative 

engineering tools for establishing force-similitude and reconciling scale effects. “If scaled 

correctly, deflections, deformation, speeds, forces, accelerations, energies, temperatures, electric 

currents, magnetic fields, and a host of other relevant quantities measure on the scale model 

permit prediction of the corresponding quantities of the prototype design” (Emori and Schuring 

1977, 7). The qualitative value of environmental models in engineering is generally downplayed. 



In Scale Models in Engineering: Fundamentals and Application, Emori and Schuring dismiss 

qualitative models as being beyond the scope of the book despite their valuable role in 

“delineating the boundaries of new engineering devices rather than in pinpointing exact data” 

(ibid, 5). Similarly, Pope’s comprehensive Low-speed Wind Tunnel Testing devotes only two (of 

728) pages to qualitative ‘Small Wind Tunnels’. While qualitative structural models such as Frei 

Otto’s tensile form-finding experiments, Antoni Gaudi’s hanging catenary studies, and Heinz 

Isler’s frozen cloth models are well-known, environmental models simulating airflow have 

received less attention. Moreover, environmental models tend to be used as final design 

verification tools in engineering. Munitxa notes methodological limitations of the conventional 

use of cfd and wind tunnels, which are “often unable to follow the rapidity of the design changes 

and decision making” (Munitxa 2015, 366).    

Environmental models played a limited role as architectural design tools in the post-war 

period. Aronin notes that in 1949, the Aeronautical Engineering Department at the University of 

Texas “initiated a modest program in research on the aerodynamic characteristics of modern 

homes… Full-scale experimental rooms as well as models of them for wind-tunnel tests, were 

constructed” (1963, 201). At their zenith in the 1950s and 1960s, academics such as Victor and 

Aladar Olgyay used environmental models to make solar trajectories and wind flow patterns 

visible to hone bioclimatic design methodologies. These techniques were then eclipsed by 

computational techniques. Contemporary ventilation resources for architects tend to focus on 

computational strategies, and when they do include reference to physical models, the emphasis is 

again on reconciling scale effects. In Designing Spaces for Natural Ventilation: An Architect’s 

Guide, Battaglia and Passe describe some advantage of using wind tunnels, but lament that, “The 

drawback is that the dynamics of the air flow within the building is not measured” (2015, 281).   



There are some contemporary designers using physical models, often with digital 

components, for designing within a range of environmental processes. Landscape architects such 

as Cantrell and Holzman (2016), Robinson (2014), and Rico and Llabres Valls (2016) have 

integrated digital sensors into physical models to track hydrological and geomorphological 

processes, which are then often augmented or tested further through digital simulation. Munitxa 

has integrated robotics with wind tunnels to test how building form and materiality impact 

airflow (2015). Moreover, architectural designers such as Smout Allen and Geoff Manaugh have 

designed ‘envirographic’ instruments for registering contingent environmental conditions at full-

scale (Manaugh 2013). This study presents a design methodology for prototyping scaled 

controlled environments of airflow and reflects on how the design and construction of these 

prototypes offers design insights about the interactions between fluid and solid materials. A look 

first to an early wind tunnel prototype introduces some key design considerations about working 

materially with air that informed contemporary prototypes.  

Phenomenon 

Étienne-Jules Marey was an experimental physiologist practicing from mid to late 

nineteenth century in France at a time when precision measure and working in the controlled 

environment of the laboratory were increasing hallmarks of the sciences (Braun 1992). Marey 

exemplified the empirical tradition of relying on the senses for verifiable data about the workings 

of the physical world (Daston and Galison 2010). The subject of Marey’s focus was animate 

motion; he had a particular interest in the mechanics underpinning flight. Marey’s earliest work 

involved devising drawing instruments that made physiological conditions such as blood flow 

intensities and heart rates visible as a series of lines and curves transcribed on a surface. The 



technique by which these transcriptions were translated from machine to drawing is referred to as 

the graphic method. The graphic method was used to translate a vast range of human and animal 

motion throughout Marey’s career, but the defining features were the same: a transcribing device 

distilled three-dimensional movement over time into two-dimensional legible/measureable lines 

on a flat surface (Figure1). Marey was also a pioneer of many photographic techniques, 

particularly chronophotography. One of the most well-known photographic instruments he 

devised, the photographic gun, captured successive movements of a bird’s wing movements in 

flight (Figure 2). Using the graphic method and chronophotography, Marey’s life’s work entailed 

designing sensitive instruments for making invisible phenomena visible and, in so doing, 

measurable. While Marey neither invented the wind tunnel nor the smoke visualisation 

technique, his flow visualisation techniques were the most legible at the time as they grew 



directly from the extensive repertoire of visual translation techniques that preceded them. 

Marey’s wind tunnels were one of the final projects of his prolific career and marked a 

shift from focusing on the subject of movement to the medium through which movement takes 

place. Marey completed a series of water tank studies that are the most direct visual precursors to 

his wind tunnel studies. The conceptual leap between working with water and working with air 

was an important one for it established “the all-important equivalence of water and air as elastic 

mediums--an observation that would lead people the likes of Marey to realize that testing bodies 

in water and air were not mutually exclusive” (Ramirez 2013 p189).  



In the wind tunnel, smoke from burning tinder was drawn through fine silk gauze, which 

straightened air currents before they progressed into a viewing chamber, lined on three sides 

with black velvet. Air was drawn through the chamber using an aspirating ventilator. Marey 

describes the seemingly straightforward concept behind the wind tunnel as follows: "Produce a 

steady stream of air within a closed device with transparent walls; introduce parallel and 

equidistant wisps of smoke; on the trajectory of these wisps of smoke, place diversely shaped 

surfaces, at the contact of which they change their course; light brightly and take an instant 

photograph of their appearance. Such was the programme” (quoted in Musee D’Orsay 2005) 

(Figure 3). Like the graphic method, the high contrast smoke filament cords create continuous 

lines moving through space; the darkened wind tunnel is spatially compressed, creating a flat 

substrate for registering this movement. Flow patterns are captured through temporally calibrated 

photographs that reveal a moment in time of a particular flow regime (Figure 4).  





The primary contribution of Marey’s wind tunnel at the time was the technique he devised 

for measuring air speed differentials.  “M. Marey has devised an ingenious method of 

measuring the speed of each stream at different points of its path, and especially in front and in 

the rear of the obstacle where adjustments to the currents would be most pronounced and would 

have most impact on aerodynamic performance” (Scientific American 1902, 75). He did this by 

incorporating a vibrating device that translated linear smoke streams into waveforms, the crests 

of which could be counted and their rates of movement understood relationally (Figure 5).  

Funded by the Smithsonian Institute, Marey’s wind tunnels were developed as 

aeronautics research tools. However, despite the visual clarity of his photographs and the air 

flow rate measuring technique, the wind tunnels contributed little to the emerging field of 

aeronautics; 



they merely corroborated existing knowledge about wing profiles (Scientific American 1902). 

The crucial deficiency of Marey’s wind tunnels at the time was that they could not provide 

numeric data on air pressure, a crucial parameter for understanding air resistance (Hoffman 

2013). Thus, while Marey’s photographs made measurable one phenomena--air speed--they 

neglected to capture another deemed more useful at the time--air pressure.  

The significance of Marey’s wind tunnel technique for architectural designers lies less in 

what is being measured or not measured than in what was required to make air measurable in 

the first place. Marey’s photographs offer a highly legible view of how air behaves as a moving 

material condition, as a series of lines moving over time. Making these lines visible entailed 

substantial conceptual spatial and material translation. Air was transformed from an invisible 

vast hemispheric matrix to a legible, high-contrast phenomena legible in relation to the human 

body. Marey compressed and materialised air through the introduction of a new material, 

smoke, which retained fluidity while allowing visibility. It is only through these translations that 

air could be made into a visible, measurable artefact. By making air visible, its steady state and 

turbulent behaviours become legible as either moving lines white cords or whirling swirls and 

vortex trails of turbulence when their path is disturbed. Marey spatially compressed and 

materialised air, allowing it to play a more active role as a design material.  

Instrument 

The final wind tunnel featured in Scientific American and further described by Braun 

(2013) consisted of 152cm (5’) x 61 cm (2’) chamber, a 90cm (3’) section of which was lined 

on three sides with glass and with black velvet on the fourth. Smoke produced by burning tinder 

was fed into the upper air chamber and drawn into the glass chamber through sixty 6mm (¼”) 



diameter tubes distanced 6mm (¼”) apart. The smoke was drawn through fine silk gauze with 

equal warp and weft, which straightened the air currents before they were let into the chamber 

via an aspirating ventilator that drew air to the other end of the chamber (Figure 6). If we 

move the lens of the camera back from the testing chamber to capture the componentry and 

assembly of wind tunnel, what other insights are revealed about designing with airflow?  

When viewing photographs of the wind tunnel, one is first struck by an incongruance 

between the robust assembly of wooden boxes and flexible ducts, and the delicate wisps of 

curling smoke that it creates. To fully appreciate the complexity of Marey’s wind tunnel 

requires understanding it not as an awkward mechanical assemblage but as a sensitive precision 

instrument. The pursuit of plotting forces and pressure differentials were the bookends of 

Marey’s career and Marey was aware of the delicate nature of working with the forces of air; 



slight frictions and resultant inertia in the mechanics of graphic method transcriptions often 

resulted in distortions in the resultant curves (Hinterwalder 2015).  

 As with his other instruments, Marey’s wind tunnel was sensitive to external disruption. 

“When the ventilator is set in motion the air is aspirated and draws with it the smoke, and the 

latter descends in a series of vertical cords which may reach as long as three feet if the air of the 

room is perfectly still. This is not always easy to realize as often the movements of the operator 

are sufficient to cause a perceptible deflection of the air-currents” (Scientific American 1902, 

75). So sensitive was Marey’s wind tunnel that even the slightest pressure differential beyond 

the controlled environment testing bed would disrupt this steady-state condition. Marey’s wind 

tunnel registers the unintentional blips caused by external disruptions as deviations in the steady 

smoke streams (Figure 7). The ‘transcribing device’ that transferred external disruption into the 

interior testing bed was air in the form of vibrations transferred through the base of the wind 

tunnel.  



Wind tunnels are conventionally used to measure air flow rates or pressures. However, 

other lessons about airflow are revealed through a close look at the componentry and workings 

of Marey’s wind tunnel. Wind tunnels contain physical components that actively manipulate 

airflow, revealing that air can be generated, straightened, settled, directed, and outlet through the 

shape and form of its enclosures. Marey’s wind tunnel also reveals that air is highly sensitive to 

both internal and external disruption, transferring disturbance through solid materials. In even 

the most controlled settings, there are exchanges between interior and exterior environments. 

Wind tunnels simulate exterior conditions within a controlled interior testing chamber contained 

within a controlled ‘laboratory’ interior, acting as complex environmental mediating devices 

between nested interior and exterior environments (Ramirez 2013).  



Instrumentation: Wind Tunnels 

Photographic documentation of the wind tunnel occlude the full complexity of what is 

entailed in constructing the steady-state conditions that enables smoke cords to follow a steady 

path. This section introduces a third vantage point: the development of contemporary wind 

tunnel and water table prototypes inspired by Marey’s that explore further insights about 

designing with airflow revealed by working directly with air as a material condition.  

There are two physical modelling techniques that make airflow associated with pressure 

differentials visible and/or measurable: wind tunnels and water tables. While the range of sizes 

and assemblies of wind tunnels is diverse, the componentry for small-scale open circuit wind 

tunnels is roughly the same. A contraction cone speeds air by compressing it from a larger to a 

smaller volume before it moves through a flow straightener into the controlled environment of 

the test section. A diffuser connects the testing section to the air-source, generally a fan, which 

draws air through the tunnel (Barlow et al 1999) (Figure 8).  One key design consideration 

informing prototype development is the need to create a continuous interior surface with smooth 

transition between components; unintentional projections create turbulence, disrupting the 

steady state condition necessary within the test section. 

Guidance for constructing small-scale, open-circuit wind tunnels falls into two 

categories: internet resources targeting hobbyists using off-the shelf materials and an ad-hoc 

DIY assembly sensibility and engineering resources relying on more robust techniques, 

primarily using steel frames and formed sheet metal, than is necessary for small-scale qualitative 

architectural design exercises. In both cases, guidance focuses on performance of components 

(what they do) rather than on the logics, or tectonics, of construction. The prototyping process of 

contemporary environmental models merges insights from both domains, adopting scale and 



simplicity offered by DIY resources with material precision offered by engineering resources. 

As such, the prototyping process honed to a tectonic sensibility by working directly with fluid 

phenomena and the solid materials that contain, direct and disperse those phenomena.  





The first prototype V1 was constructed in a size similar to that of Marey’s wind tunnel. 

It was designed using 2d annotated construction drawings, which provided a template for 

construction using sheet materials such as plywood, foam core, and plexiglass (Figure 9).  

Translating the ideal of the drawing into a material artefact presented challenges. Material 

deflections, gaps, and difficult translations between curvilinear and rectilinear components 

compromised precision of component fit. The suction of airflow destabilised the lightweight 

cardstock expansion and contraction cones, making them unwieldy to assemble and use while 

also revealing the force potential and destabilising effects of flowing air. 



To gain precision and stability, the second prototype V2 was designed first as a digital 

model. Components such as air straightening baffles, smoke machine nozzles, and expansion 

hoods designed to direct, control, or straighten air movement were digitally fabricated rather 

than by using hand tools. The cylindrical testing bed facilitated smoother transitions between the 

conical openings of expansion cones and diffusers and the testing chamber, equalising 



distribution of air pressure along all surfaces (Figure 10). 

Smokestream visualisation in V1 and V2 lacked the contrast evident in Marey’s 

photographs. Workshop provision prevented working with smoke and the closest 

equivalent, vapour produced by smoke machines, lacked the same material density and 

resultant visual 



clarity. Instead, a series of cardstock ‘flags’ attached to pin ‘posts’ were installed in a grid on a 

base inserted into the model testing back (Figure 11). Air movement patterns around models 

placed within the testing bed were then registered through rotation of the flags, which proved to 

be sensitive to even minor variations in airflow. The flags indicate flow direction as a field of 

vectors rather than as lines moving over time. In areas of continuous flow, flags remained 

largely immobilized. In areas of turbulence, flags spun continuously.  



From here, wind tunnels prototypes followed two different trajectories: one towards 

dimunition (V3) and the other towards increased stability (V4). V3 was scaled down to create a 

desktop wind tunnel. Detailing of this wind tunnel, with reduced material spans, and additional 

integrated supports, is proportionally more akin to an architectural assembly. Thus the test 

section interior can be read as a steady-state building interior rather than an exterior 

environment 



within which an architectural model is placed. In this reading, modifications to the exterior of 

the testing bed test how the form and configuration of a building exterior alters flow conditions 

within a building interior (Figure 12).  This conceptual inversion prompts thinking about 

environmental models as models of architecture, explored more in the next section. 



The final wind tunnel V4 responded to two governing tectonic parameters that evolved 

through the prototyping process: the need to ensure component assembly stability while also 



ensuring seamless interior material transitions. A series of external steel frames provide 

support and facilitate seamless interior transitions between components. Neoprene layers 

provide a vibration buffer between steel frames (Figure 13). V1 was marked by instability and 

imprecise material intersections; V2 by a streamlined logic levitating within the digital 

environment; V4 operates somewhere in between. On the one hand, it relies to ensure smooth 

material and geometric transitions and equal distribution of forces. On the other hand, it 

responds to gravitational forces and sensitivity to exterior disturbance by ensuring stability. 

This assembly proved stable and easy to use while also making flow patterns visually legible.  



Instrumentation: Water Tables 

Water tables create a steady sheet of water upon which models are placed; lines of dyed 

water reveal flow patterns around sectional models, revealing airflow patterns around and 

through buildings. Lechner’s Heating, Ventilation and Cooling includes specifications for a 

water table developed at Chiang Mai University (2009, 675). The 20” x 90” (50cm x 230cm) 

water table sits on a raised testing surface and is composed of the following components: A 

trough at one end is filled with water, which then forms a steady sheet of water across the 

inclined testing surface before outletting through a drain at the trough in the other end (Figure 

14). Once a steady flow across the table surface has been achieved, a tray with a linear array of 1 

mm diameter holes is placed across the test bed. Dyed water is poured into the tray and resultant 

colour streams are introduced into the water. The dyed water streams then pass through and 

around plastic sectional models, simulating “in slow motion the smoke streams in a wind tunnel 

or in an actual building” (ibid). While it is tempting to focus on the swirling vortex trails in 

Marey’s wind tunnel photographs, the water table prototopying process revealed that it was far 

more difficult to achieve its steady-state counterpart marked by legible, continuous filament 

lines (Figure 15).  





The first water table V1 followed similar constructional strategy as the first wind tunnel, 

using Lechner’s prototype as a guide. In this prototype, conventional construction drawings 

served as a construction template and hand tools were primarily used for construction. A 

plywood base provides support for a plexiglass tray with water reservoir at one end, drain at the 

other, and testing surface in between. A plexiglass trough with a equally spaced 1mm diameter 

holes rests on the test surface; when filled with dyed water, filament lines disperse along the 

testing surface, registering flow patterns around architectural models placed on the testing bed. 

This prototype suffered from surface deflections that caused water to pool towards the center 

(Figure 16). The prototype also leaked into the plywood base. Water thus became a measure of 

constructional defects, pooling along deflections and leaking through gaps. In response to the 

weight of water, horizontal spans of sheet materials, and need for tight constructional tolerances, 

subsequent prototypes became more dimunitive and gained precision through digitally 

fabricated components.   





Subsequent prototypes responded increasingly to the particular forces imposed by containing 

and directing water (Figure 17). Whereas the first water table required a pump to redirect 

drained water back to the sink drain, subsequent prototypes were gravity-fed using a utility sink 

as water source, drain, and surface support. Prototype V2 tested a range of dye dispersal 

strategies using off-the-shelf aquarium splitters, 3d printed nozzles and lasercut troughs. 

Prototype V3 integrated componentry for surface calibration; adjustable feet establish level; a 

steel arm welded to the steel angle base provided steady-support for a smart phone. Prototype 

V4 integrated a light table 



into the base. It also includes a matrix of surface supports intended to steady models susceptible 

to movement by water pressure (Figure 18). Water again became the measure of constructional 

defects, leaking through the surface testing bed and pooling into the model undercarriage 

below, obscuring the intended high contrast view on the top surface (Figure 19). Nevertheless, 

the prototyping progress reflects a tectonic logic of nested vessels and integrated mechanisms 

for calibration.  





Architecture 

 What architectural design insights about airflow are revealed by the three measures 

presented in this paper? This section reflects on these insights by exploring models of 

architecture suggested by the three frames of reference explored in this paper. Marey’s wind 

tunnel photographs capture the technique he devised for measuring airflow rates as differential 

moving lines. In order to make air measurable, it was translated into moving smoke lines, 

making the ‘non-visual phenomena object’ of airflow visible and legible as a material system 

with distinct steady-state and turbulent flow patterns (Hight 2009). Marey’s photographs also 

reveal that air, which ultimately had the capacity to keep heavy machines aloft, had substantial 

force-potential. The aerodynamic forms tested within Marey’s wind tunnel a suggest a model of 

architecture in which building takes its shape in response to the forces of air movement exerted 

upon it. In this model of architecture as environmental inscription, buildings appear as erosions 

with soft edges and trails, suggesting that they have, in effect, been shaped by the force of air.  

Foster and Partner’s 2001 unbuilt project, the Ventiform Building, exemplifies this model 

of architecture as environmental inscription (Figure 20). The project’s name refers to ventifacts, 

“rocks that are carved into aerodynamic forms by windblown sand” (Gissen 2003, 20).  An 

unbuilt speculation for a high rise building in southwest England, the project is presented in 

different forms and configurations, but two primary governing principles remain the same. 

First, a boomerang form in plan creates surfaces that smoothly direct air movement around the 

building, creating intentional wind pockets on the leeward side. Second, a wind turbine is 

integrated into the building, necessitating orientation and configuration that maximises high 

speed wind through the turbine. The building appears as a crystallisation of an aerodynamic 



moment and an optimisation of a prevailing wind condition. 

In the second frame of reference, Marey’s wind tunnel is presented as an instrument of 

environmental mediation. One the one hand, it is composed of componentry designed to 

actively generate, speed up, direct, straighten, and outlet airflow. On the other hand, it is a 

sensitive device measuring airflow deviations, registering exterior disturbance within the 

interior of the testing bed. This reading of wind tunnels and water tables as both subtle and not-

so-subtle environmental mediators suggests a model of architecture as environmental 

instrument. In this 



model, buildings are dynamic, actively mediating between interior and exterior 

conditions through adjustable componentry.  

Glenn Murcutt’s the Marika-Alderton House, also known as House for an Aboriginal 



Community, completed in 1994 in Australia’s Northern Territory, exemplifies this approach 

(Figure 20). The form of the building is similar to many of Murcutt’s projects; a rectangular 

single room-width building that facilitates cross-ventilation is capped with a large overhanging 

corrugated steel shed roof that sheds water and protects from intense tropical sun. In this case, 

the building is particularly porous, with no glazing, which is a liability during a cyclone. Both 

off-the-shelf and custom componentry allows for careful environmental calibration, or 

instrumental tuning, of the house. Hinged hopper plywood panels extend along the full perimeter 

of the building except when adjacent to sleeping areas. These, combined with vertical slatted 

wall cladding ensure that the building can continuously breathe with varying intensities. Carter 

notes that the east and west ends of the buildings can be opened “to catch every possible current 

and eddy” (2011, 376). Tapering vertical fins profiled similar to airplane wings act as solar 

breaks while also “reducing lateral wind velocity” (Frampton 2002, 2). The house is raised on 

stilts, providing access to higher, cooler air movement. Murcutt specified very particular roof 

vents designed for racing yachts, ‘wind workers’ pivot, actively registering wind movement and 

direction; moreover, they are attached to tubes that extend through the house, drawing air from 

underneath to equalise cyclonic pressure (Murcutt 2002).  

The house is anything but aerodynamic in shape. This is a crucial design consideration for 

buildings that actively encourage airflow design in turbulence rather than designing it out. 

“While objects created to move through air are designed to lower resistance against air, 

buildings designed for natural ventilation need to build up resistance in order to facilitate the 

flow” 

(Battaglia and Passe 2015, 17). Air movement is directed through or blocked by moving 

shutters, sliding panels, twirling ventilation caps, and hinging wall panels. The house is 

responsive and dynamic; it is composed of building elements with particular causal relations 

between those 



components and air movement. 

The third frame of reference in this paper were contemporary wind tunnels and water tables 

prototypes, which reveal material reciprocities between fluids and the solid materials that 

contain and direct them. Air and water act as measures of constructional anomalies such as 

material deflections and gaps not visible otherwise. Working dialogically between the two 

material sensibilities prompts development of tectonic strategies and increased attention to 

details and joints. The prototyping process points less to a model of architecture and more to a 

model of design in which fluid materials are used to highlight properties of their solid 

counterparts. Air exerts destabilizing forces on continuous surfaces, requiring increased rigidity; 

water pools along deflected surfaces, and leaks through inadvertent gaps, requiring tighter fit. 

Wind tunnel prototyping lead to a tectonic logic of smooth material and geometric transitions, 

lightweight material rigidity and assembly stability. This can be traced directly through the 

development of joints. V1 lacks a clear approach to material intersections; V2 is largely a 

construction of smooth-fit lapped joints; V4 is a construction of gasketed joints. The tectonics of 

wind tunnels thus operate somewhere between the aerial domain of aeronautics and the 

grounded domain of architecture.  Water table prototypes reflected a different tectonic trajectory. 

Creating controlled steady-state environments requiring machining levels of precision that are 

facilitated by digital fabrication. A tectonic logic of nested vessels and integrated mechanisms 

for calibration developed in response.  

The significance of this research is that it places environmental models both within a 

broader historic and a more nuanced contemporary architectural design context. Close reading, 

designing, and prototyping environmental models offer designers direct insights into the material 

properties and behavioural tendencies of airflow, about working between controlled interior and 



erratic exterior environments, and about the reciprocities between active, moving materials and 

solid obstructions. Whereas environmental models have conventionally been used as 

engineering tools for quantitative verification of finalised building designs, designing 

environmental models reveals their capacity to act as generative design tools. Environmental 

models provide a lens for understanding, viewing, and intervening within the fluid conditions 

that surround, activate and impact building shape, form, and material assembly. They reveal 

some of the forces and material exchanges between relatively static building materials and the 

shifting, fleeting, dynamic atmospheric conditions surrounding and activating them. 

Environmental models make the ‘non-visual phenomena object’ of airflow visible and materially 

tangible, giving its latent tectonic and form-giving properties design agency.  
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