87 research outputs found

    Fabrication of Polymer Optical Fiber Splitter Using Lapping Technique

    Get PDF
    This work involves in designing and developing a POF-based directional coupler/splitter using lapping technique and geometrical blocks. Two fiber strands were first tapered at the middle and they were attached to the geometrical blocks and lapped together. Design parameters that are used to develop this coupler/splitter are core diameter, Dc, etching length, Le, bending radius, Rc, coupling length, Lc and pressure, Fc. All the parameters were taken into account during characterization and analysis of the designed coupler in order to find the most optimum prototype coupler/splitter. Characterizations are done by experimental set-up to test the efficiency, splitting ratio, coupling ratio, excess loss and insertion loss for all the couplers/splitters. Through the characterization process and analysis, the optimized coupler with high splitting ratio and low excess loss were identified. Throughout the experimental process, some of the fibers were improved and renewed in order to realize the design and development of the coupler using this technique. The device can also be utilized as an optical tap and the applications of the device are not only limited in in-house network but also in automotive applications. By using a platform, several splitting ratio can be obtained by integrating different core-cladding thickness and bending radius in order to get the desired splitting ratio and excess loss

    The DIRC Particle Identification System for the BABAR Experiment

    Get PDF
    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail

    ATLAS pixel detector electronics and sensors

    Get PDF
    The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    The LUX-ZEPLIN (LZ) experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10−48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    • …
    corecore