54 research outputs found

    Trifolirhizin relieves renal injury in a diabetic nephropathy model by inducing autophagy and inhibiting oxidative stress through the regulation of PI3K/AKT/mTOR pathway

    Get PDF
    Purpose: To evaluate the effects of trifolirhizin on diabetic nephropathy (DN), and the mechanism of action. Methods: Male db/db mice (8 weeks, n = 24) and age-matched control mice (n = 6) were obtained. The mice were further divided into four groups and administered increasing doses of trifolirhizin (0, 12.5, 25 and 50 mg/kg). Histological analysis of renal tissues were performed by H & E staining. Blood urea nitrogen (BUN) and creatinine were determined using enzyme-linked immunosorbent assay (ELISA). Immunoblot and TUNEL assay were performed to investigate the effect of trifolirhizin on autophagy and apoptosis, while ELISA and dihydroethidium (DHE) staining were conducted to evaluate reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) levels. The effect of trifolirhizin on PI3K/AKT/mTOR pathway was determined using Immunoblot assays. Results: Trifolirhizin alleviated renal injury in diabetic mice, and also activate autophagy and inhibited apoptosis in the renal tissues in diabetic mice (p < 0.001). In addition, trifolirhizin inhibited the oxidative stress response in the renal tissue in diabetic mice (p < 0.001). Trifolirhizin further inhibited PI3K/AKT/mTOR pathway and therefore relieved renal injury in the diabetic nephropathy model (p < 0.001). Conclusion: Trifolirhizin alleviates renal injury in diabetic mice, activates autophagy, and inhibits apoptosis in renal tissue of diabetic mice. Therefore, trifolirhizin is a promising a promising drug for the treatment of DN

    LncRNA-42060 Regulates Tamoxifen Sensitivity and Tumor Development via Regulating the miR-204-5p/SOX4 Axis in Canine Mammary Gland Tumor Cells

    Get PDF
    Tamoxifen is the drug of choice for endocrine therapy of breast cancer. Its clinical use is limited by the development of drug resistance. There is increasing evidence that long non-coding RNAs (lncRNAs) are associated with tumor drug resistance. Therefore, we established two TAM-resistant cell lines, CHMpTAM and CHMmTAM. The different expression levels of lncRNA and miRNA in CHMmTAM and CHMm were screened by RNA sequencing, and the lncRNA-miRNA interactions were analyzed. LncRNA ENSCAFG42060 (lnc-42060) was found to be significantly upregulated in drug-resistant cells and tumor tissues. Further functional validation revealed that the knockdown of lnc-42060 inhibited proliferation, migration, clone formation, restoration of TAM sensitivity, and reduction of stem cell formation in drug-resistant cells, whereas overexpression of lnc-4206 showed opposite results. Bioinformatics and dual-luciferase reporter gene assays confirmed that lnc-42060 could act as a sponge for miR-204-5p, further regulating SOX4 expression activity and thus influencing tumor cell progression. In conclusion, we screened lncRNAs and miRNAs associated with TAM resistance in canine mammary gland tumor cells for the first time. lnc-42060 served as a novel marker that may be used as an important biomarker for future diagnosis and treatment

    Non-coding RNA regulation of Magang geese skeletal muscle maturation via the MAPK signaling pathway

    Get PDF
    Skeletal muscle is a critical component of goose meat and a significant economic trait of geese. The regulatory roles of miRNAs and lncRNAs in the maturation stage of goose skeletal muscle are still unclear. Therefore, this study conducted experiments on the leg muscles of Magang geese at two stages: 3-day post-hatch (P3) and 3 months (M3). Morphological observations revealed that from P3 to M3, muscle fibers mainly underwent hypertrophy and maturation. The muscle fibers became thicker, nuclear density decreased, and nuclei moved towards the fiber edges. Additionally, this study analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs during the skeletal muscle fiber maturation stage, identifying 1,949 differentially expressed mRNAs (DEMs), 21 differentially expressed miRNAs (DEMIs), and 172 differentially expressed lncRNAs (DELs). Furthermore, we performed enrichment analyses on DEMs, cis-regulatory genes of DELs, and target DEMs of DEMIs, revealing significant enrichment of signaling pathways including MAPK, PPAR, and mTOR signaling pathways. Among these, the MAPK signaling pathway was the only pathway enriched across all three types of differentially expressed RNAs, indicating its potentially more significant role in skeletal muscle maturation. Finally, this study integrated the targeting relationships between DELs, DEMs, and DEMIs from these two stages to construct a ceRNA regulatory network. These findings unveil the potential functions and mechanisms of lncRNAs and miRNAs in the growth and development of goose skeletal muscle and provide valuable references for further exploration of the mechanism underlying the maturation of Magang geese leg muscle

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Research on Landscape Perception and Visual Attributes Based on Social Media Data—A Case Study on Wuhan University

    No full text
    With the rapid rise of social media, the photo-taking behavior of tourists and their uploaded photos provide a new perspective to explore landscape visual characters. In this study, we provide methodological advancements for assessing landscape visual quality based on content analysis of user-generated photographs. The purpose is to demonstrate an empirical method for evaluating visual indicators reflected in photographs through a case study application. This research takes the core cultural landscape area of Wuhan University as the research scope. The photographs shared on a famous Chinese social media platform Sina Weibo during the Cherry Blossom Festival, together with tourists’ trajectory data, were used as data sources. Based on a fixed-point photography experiment, the spatial relationship between the scenic spot and the observation point was illustrated. Utilizing a semi-automatic photo content analysis founded on computer vision technology, landscape visual attributes of each attraction were studied thoroughly regarding complexity, visual scale, and color. The results indicate that the Old Dormitory is the most popular scenic spot with diverse viewing angles, strikingly vivid colors, and rich color combinations. Complexity and color play key roles in landscape visual quality, while the depth of view has a subtle impact, which suggests the depth-to-height ratio of less than 1 is the best distance for viewers to take photographs. In all, the mapping relationship between landscape visual attributes and viewers’ perception was revealed in the present work

    Research on Landscape Perception and Visual Attributes Based on Social Media Data—A Case Study on Wuhan University

    No full text
    With the rapid rise of social media, the photo-taking behavior of tourists and their uploaded photos provide a new perspective to explore landscape visual characters. In this study, we provide methodological advancements for assessing landscape visual quality based on content analysis of user-generated photographs. The purpose is to demonstrate an empirical method for evaluating visual indicators reflected in photographs through a case study application. This research takes the core cultural landscape area of Wuhan University as the research scope. The photographs shared on a famous Chinese social media platform Sina Weibo during the Cherry Blossom Festival, together with tourists’ trajectory data, were used as data sources. Based on a fixed-point photography experiment, the spatial relationship between the scenic spot and the observation point was illustrated. Utilizing a semi-automatic photo content analysis founded on computer vision technology, landscape visual attributes of each attraction were studied thoroughly regarding complexity, visual scale, and color. The results indicate that the Old Dormitory is the most popular scenic spot with diverse viewing angles, strikingly vivid colors, and rich color combinations. Complexity and color play key roles in landscape visual quality, while the depth of view has a subtle impact, which suggests the depth-to-height ratio of less than 1 is the best distance for viewers to take photographs. In all, the mapping relationship between landscape visual attributes and viewers’ perception was revealed in the present work

    Development and application of multiplex PCR method for simultaneous detection of seven viruses in ducks

    No full text
    Abstract Background Major viruses, including duck-origin avian influenza virus, duck-origin Newcastle disease virus, novel duck parvovirus, duck hepatitis A virus, duck Tembusu virus, fowl adenovirus, and duck enteritis virus, pose great harm to ducks and cause enormous economic losses to duck industry. This study aims to establish a multiplex polymerase chain reaction (m-PCR) method for simultaneous detection of these seven viruses. Results Specific primers were designed and synthesized according to the conserved region of seven viral gene sequences. Then, seven recombinant plasmids, as the positive controls, were reconstructed in this study. Within the study, D-optimal design was adopted to optimize PCR parameters. The optimum parameters for m-PCR were annealing temperature at 57 °C, Mg2+ concentration at 4 mM, Taq DNA polymerase concentration at 0.05 U/μL, and dNTP concentration at 0.32 mM. With these optimal parameters, the m-PCR method produced neither cross-reactions among these seven viruses nor nonspecific reactions with other common waterfowl pathogens. The detection limit of m-PCR for each virus was 1 × 104 viral DNA copies/μL. In addition, the m-PCR method could detect a combination of several random viruses in co-infection analysis. Finally, the m-PCR method was successfully applied to clinical samples, and the detection results were consistent with uniplex PCR. Conclusion Given its rapidity, specificity, sensitivity, and convenience, the established m-PCR method is feasible for simultaneous detection of seven duck-infecting viruses and can be applied to clinical diagnosis of viral infection in ducks

    Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases

    No full text
    Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases
    corecore