42 research outputs found

    Seismic Imaging Method for Medical Ultrasound Systems

    Get PDF
    Medical ultrasound usually implements ray-based imaging algorithms, in which the most severe limitation involves the implicit assumption of constant-velocity media. When there are tissues with different velocities---typical for the human body---, the image of the underlying targets is strongly degraded in placement and resolution, due to p\phantom{\rule{0}{0ex}}h\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}e a\phantom{\rule{0}{0ex}}b\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}n. To address this problem, the authors look to concepts developed in the context of seismic prospecting, relying upon an undulatory description of the physical process. Laboratory assessment of this imaging strategy, even in the presence of an aberrant layer, reveals remarkable spatial resolution and highly accurate target placement

    3d crs analysis: a new data-driven optimization strategy for the simultaneous estimate of the eight stacking parameters

    Get PDF
    We devised a data-driven strategy for the simultaneous estimate of the eight CRS traveltime attributes, solving a global non-linear minimization problem without the need of computing gradients. The essential elements in this Eni research and development activity are the following: a conjugate-direction method supported by well known convergence properties and an iterative line-search implementing the strong Wolfe-Powell rule for the control of the steplength. The resulting algorithm can reach very good solutions in presence of many local minima.3284-329

    Intra- and inter-rater reliability of joint range of motion tests using tape measure, digital inclinometer and inertial motion capturing

    Get PDF
    Background In clinical practice range of motion (RoM) is usually assessed with low-cost devices such as a tape measure (TM) or a digital inclinometer (DI). However, the intra- and inter-rater reliability of typical RoM tests differ, which impairs the evaluation of therapy progress. More objective and reliable kinematic data can be obtained with the inertial motion capture system (IMC) by Xsens. The aim of this study was to obtain the intra- and inter-rater reliability of the TM, DI and IMC methods in five RoM tests: modified Thomas test (DI), shoulder test modified after Janda (DI), retroflexion of the trunk modified after Janda (DI), lateral inclination (TM) and fingertip-to-floor test (TM). Methods Two raters executed the RoM tests (TM or DI) in a randomized order on 22 healthy individuals while, simultaneously, the IMC data (Xsens MVN) was collected. After 15 warm-up repetitions, each rater recorded five measurements. Findings Intra-rater reliabilities were (almost) perfect for tests in all three devices (ICCs 0.886–0.996). Inter-rater reliability was substantial to (almost) perfect in the DI (ICCs 0.71–0.87) and the IMC methods (ICCs 0.61–0.993) and (almost) perfect in the TM methods (ICCs 0.923–0.961). The measurement error (ME) for the tests measured in degree (°) was 0.9–3.3° for the DI methods and 0.5–1.2° for the IMC approaches. In the tests measured in centimeters the ME was 0.5–1.3cm for the TM methods and 0.6–2.7cm for the IMC methods. Pearson correlations between the results of the DI or the TM respectively with the IMC results were significant in all tests except for the shoulder test on the right body side (r = 0.41–0.81). Interpretation Measurement repetitions of either one or multiple trained raters can be considered reliable in all three devices

    GRIDA3—a shared resources manager for environmental data analysis and applications

    Get PDF
    GRIDA3 (Shared Resources Manager for Environmental Data Analysis and Applications) is a multidisciplinary project designed to deliver an integrated system to forge solutions to some environmental challenges such as the constant increase of polluted sites, the sustainability of natural resources usage and the forecast of extreme meteorological events. The GRIDA3 portal is mainly based on Web 2.0 technologies and EnginFrame framework. The portal, now at an advanced stage of development, provides end-users with intuitive Web-interfaces and tools that simplify job submission to the underneath computing resources. The framework manages the user authentication and authorization, then controls the action and job execution into the grid computing environment, collects the results and transforms them into an useful format on the client side. The GRIDA3 Portal framework will provide a problem-solving platform allowing, through appropriate access policies, the integration and the sharing of skills, resources and tools located at multiple sites across federated domains

    A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease

    Get PDF
    Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the alpha-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD. Mitochondrial dysfunction is a contributing factor in Parkinson's disease. Here the authors carry out a multilayered omics analysis of Parkinson's disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by alpha-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients

    Concept of the Munich/Augsburg Consortium Precision in Mental Health for the German Center of Mental Health

    Get PDF
    The Federal Ministry of Education and Research (BMBF) issued a call for a new nationwide research network on mental disorders, the German Center of Mental Health (DZPG). The Munich/Augsburg consortium was selected to participate as one of six partner sites with its concept “Precision in Mental Health (PriMe): Understanding, predicting, and preventing chronicity.” PriMe bundles interdisciplinary research from the Ludwig-Maximilians-University (LMU), Technical University of Munich (TUM), University of Augsburg (UniA), Helmholtz Center Munich (HMGU), and Max Planck Institute of Psychiatry (MPIP) and has a focus on schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD). PriMe takes a longitudinal perspective on these three disorders from the at-risk stage to the first-episode, relapsing, and chronic stages. These disorders pose a major health burden because in up to 50% of patients they cause untreatable residual symptoms, which lead to early social and vocational disability, comorbidities, and excess mortality. PriMe aims at reducing mortality on different levels, e.g., reducing death by psychiatric and somatic comorbidities, and will approach this goal by addressing interdisciplinary and cross-sector approaches across the lifespan. PriMe aims to add a precision medicine framework to the DZPG that will propel deeper understanding, more accurate prediction, and personalized prevention to prevent disease chronicity and mortality across mental illnesses. This framework is structured along the translational chain and will be used by PriMe to innovate the preventive and therapeutic management of SZ, BPD, and MDD from rural to urban areas and from patients in early disease stages to patients with long-term disease courses. Research will build on platforms that include one on model systems, one on the identification and validation of predictive markers, one on the development of novel multimodal treatments, one on the regulation and strengthening of the uptake and dissemination of personalized treatments, and finally one on testing of the clinical effectiveness, utility, and scalability of such personalized treatments. In accordance with the translational chain, PriMe’s expertise includes the ability to integrate understanding of bio-behavioral processes based on innovative models, to translate this knowledge into clinical practice and to promote user participation in mental health research and care

    Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3

    Get PDF
    AIMS: Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). beta-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease. METHODS AND RESULTS: We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (DeltaKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. beta-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. beta-Adrenoceptor density was reduced in LQT3 hearts. Acute beta-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05). CONCLUSION: Cholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. beta-Adrenoceptor density is reduced, and beta-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and beta-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.status: publishe

    Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein

    Get PDF
    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio
    corecore