403 research outputs found
An approximate Markov model for the wright-fisher diffusion and its application to time series data
The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data is common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multi-locus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright- Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy, and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in Influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported
Atlas: analysis tools for low-depth and ancient samples
Summary: Post-mortem damage (PMD) obstructs the proper analysis of ancient DNA samples and can currently only be addressed by removing or down-weighting potentially damaged data. Here we present ATLAS, a suite of methods to accurately genotype and estimate genetic diversity from ancient samples, while accounting for PMD. It works directly from raw BAM files and enables the building of complete and customized pipelines for the analysis of ancient and other low-depth samples in a very user-friendly way. Based on simulations we show that, in the presence of PMD, a dedicated pipeline of ATLAS calls genotypes more accurately than the state-of-the-art pipeline of GATK combined with mapDamage 2.0. Availability: ATLAS is an open- source C++ program freely available at https://bitbucket.org/phaentu/atlas
Sino-Himalayan mountains act as cradles of diversity and immigration centres in the diversification of parrotbills (Paradoxornithidae)
Aim: Montane regions like the Sino-Himalayas constitute global diversity hotspots. Various mechanisms such as in situ adaptive divergence, speciation following immigration or allopatric diversification in complex landscapes have been proposed to account for the exceptional diversity found in a particular clade in a montane setting. We investigated macroevolutionary patterns to test these different hypotheses in the continental radiation of a Sino-Himalayan bird group, the parrotbills (Paradoxornithidae).Location: Sino-Himalayan region, Indo-Burma.Methods: We used phylogenetic comparative methods based on a multilocus, time-calibrated phylogeny to reconstruct patterns of lineage diversification, biogeographical history, morphological evolution as well as of climate niche history using ecological niche modelling.Results: The radiation of parrotbills started c. 12 Ma, diversifying at an apparent constant rate over time. The biogeographical history appears to be complex, within-region speciation in mountains was restricted to China. Size evolution was concentrated in the early phase of parrotbill radiation, whereas morphological shape evolution did not differ from Brownian motion. We found no indication for niche conservatism, with climate niche evolution occurring throughout the radiation of parrotbills.Conclusions: Parrotbills diversified within a time span of increased regional orogenesis and associated strong climate change. While the south-west and central Chinese mountains were revealed to be a species pump, with in situ allopatric diversification triggered by complex topography and high habitat turnover, the diversity in the Himalayas was chiefly the result of immigration. Evidence for continuous ecological specialization and for the absence of climate niche conservatism could be interpreted as the consequence of ongoing climate- and habitat-induced ecological opportunities. The radiation of parrotbills demonstrates the influence of multiple drivers of diversification in a single group due to the dynamic geological and palaeoclimatic history of the Sino-Himalayan region and illustrates the complex nature of continental radiations
Normalisation against circadian and age-related disturbances enables robust detection of gene expression changes in liver of aged mice
The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age- related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome
Inference of evolutionary jumps in large phylogenies using Lévy processes
Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis
Drosophila suzukii: the genetic footprint of a recent, world-wide invasion
Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populations. We examine patterns of genetic diversity within and between populations and explore alternative colonization scenarios using Approximate Bayesian Computation. Our results indicate high levels of nucleotide diversity in this species and suggest that the recent invasions of Europe and the continental United States are independent demographic events. More broadly speaking, our results highlight the importance of integrating population structure into demographic models, particularly when attempting to reconstruct invasion histories. Finally, our simulation results illustrate the general challenge of reconstructing invasion histories using genetic data and suggest that genome-level data are often required to distinguish among alternative demographic scenarios
The discovery of wild date palms in oman reveals a complex domestication history involving centers in the middle east and africa
For many crops, wild relatives constitute an extraordinary resource for cultivar improvement [1, 2] and also help to better understand the history of their domestication [3]. However, the wild ancestor species of several perennial crops have not yet been identified. Perennial crops generally present a weak domestication syndrome allowing cultivated individuals to establish feral populations difficult to distinguish from truly wild populations, and there is frequently ongoing gene flow between wild relatives and the crop that might erode most genetic differences [4]. Here we report the discovery of populations of the wild ancestor species of the date palm (Phoenix dactylifera L.), one of the oldest and most important cultivated fruit plants in hot and arid regions of the Old World. We discovered these wild individuals in remote and isolated mountainous locations of Oman. They are genetically more diverse than and distinct from a representative sample of Middle Eastern cultivated date palms and exhibit rounded seed shapes resembling those of a close sister species and archeological samples, but not modern cultivars. Whole-genome sequencing of several wild and cultivated individuals revealed a complex domestication history involving the contribution of at least two wild sources to African cultivated date palms. The discovery of wild date palms offers a unique chance to further elucidate the history of this iconic crop that has constituted the cornerstone of traditional oasis polyculture systems for several thousand years [5]
- …
