

Figure S1 Comparison of different grids. Shown are the cumulative probability density distributions (CDF) of allele frequencies after 10, 100 and 1000 generations (shown in top left corner) of selection and random drift starting from a frequency of 0.2 and obtained under the Wright-Fisher diffusion (black) and the *mean transition time* approximation for 51 and 21 uniform (solid) or quadratic (dashed) states. Results are shown for small (N = 100, A and B) and large (N = 10,000, C and D) population sizes and weak (s = 0.01, A and C) and strong (s = 0.3, B and D) section.

Figure S2 Power to infer selection and population size jointly. Here we show the posterior distributions on the population size (first panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population sizes. For each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at random (black). In contrast to the results shown in the main text, the data was simulated here with more ideal starting frequencies, namely 0.1, 0.5 and 0.9 for positively selected, neutral and negatively selected sites, respectively.

Figure S3 Power to infer selection and population sizes jointly. Here we show the posterior distributions on the population size (first panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population sizes. For each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at random (black). In all simulations, starting frequencies were chose randomly for each locus. In contrast to the results shown in the main text, 80% of all simulated loci were affected by selection.

Figure S4 Power to infer selection as a function of the number of states. We simulated five independent loci for each of the three selection coefficients s = -0.1, s = 0 and s = 0.1 for a population size of $log_{10}(N) = 4$. We then inferred the posterior distributions on *s* for each locus using different numbers of states, but assuming $log_{10}(N) = 4$. Estimates are generally biased towards weaker selection when using too few states.

Segment	Position	Ancestral ^a	Derived	Protein Change ^b	s ^c	
PB2	185	AGG	AAG	R61K	-0.08 (-0.18, -0.02)	
PB2	282	TCG	TCA	S94	-0.05 (-0.10, -0.02)	
PB2	912	GAA	GAG	E304	-0.08 (-0.18, -0.01)	
PB2	1225	CGT	AGT	R408S	0.08 (0.01, 0.16)	
PB2	1629	GAG	GAA	E543	-0.09 (-0.18, -0.03)	
PB2	1890	AGA	AGG	R630	-0.07 (-0.19, -0.02)	
PB2	2299	-	-	-	0.06 (0.01, 0.12)	
PB2	2300	-	-	-	0.05 (0.02, 0.11)	
PB2	2304	-	-	-	0.07 (0.02, 0.13)	
PB1	33	AAA	AAG	K11	0.12 (0.07, 0.18)	
PB1	529	GGT	AGT	G176S	-0.12 (-0.22, -0.04)	
PB1	1365	AAT	AAC	N455	0.07 (0.01, 0.15)	
PB1	2034	AGT	AGC	S678	-0.06 (-0.12, -0.03)	
PA	90	ACT	ACA	T30	-0.08 (-0.17, -0.01)	
PA	174	GGT	GGG	G58	-0.14 (-0.23, -0.07)	
PA	178	CTA	GTA	L59V	-0.03 (-0.05, -0.01)	
PA	1614	GAG	GAA	E538	0.09 (0.03, 0.16)	
PA	2193	-	-	-	0.06 (0.02, 0.13)	
PA	2194	-	-	-	0.07 (0.04, 0.12)	
PA	2196	-	-	-	0.07 (0.03, 0.13)	
HA	48	CCG	TCG	P6S*	0.17 (0.12, 0.25)	
HA	639	AAT	GAT	N203D	-0.11 (-0.19, -0.06)	
HA	640	AAT	ACT	N203T	-0.13 (-0.21, -0.07)	
HA	1023	GCC	ACC	A331T	-0.09 (-0.19, -0.02)	
HA	1196	ACC	ACT	T388	-0.10 (-0.18, -0.02)	
HA	1395	AAT	GAT	N455D	0.21 (0.15, 0.29)	
HA	1601	CTA	CTG	L523	-0.09 (-0.18, -0.02)	
HA	1760	-	-	-	0.02 (0.01, 0.06)	
NP	25	CTC	ATC	L8I	-0.05 (-0.11, -0.02)	
NP	390	ATG	ATA	M130I	-0.12 (-0.21, -0.06)	
NP	1104	AAC	AAT	N368	-0.11 (-0.21, -0.05)	
NA	143	ACA	ATA	T47I	0.09 (0.04, 0.16)	
NA	582	GGA	GGG	G194*	0.23 (0.16, 0.30)	
NA	823	TAC	CAC	Y274H	0.20 (0.14, 0.27)	
NA	978	TTG	TTC	L326F	-0.05 (-0.12, -0.01)	
NA	1427	-	-	-	-0.13 (-0.22, -0.05)	
M1/2	92	GAG	TAG	E22stop*	-0.06 (-0.14, -0.01)	
M1/2	147	GTC	GCC	V41A	0.13 (0.08, 0.18)	
M1/2	848	TGT	TGG	C274W	-0.07 (-0.16, -0.02)	
NS1/2	201	AGG	AGA	R67	0.08 (0.03, 0.15)	
NS1/2	329	AAA	AGA	K109R	0.07 (0.01, 0.14)	
NS1/2	373	GAC	AAC	D124N	-0.09 (-0.18, -0.02)	
NS1/2	820	-	-	-	0.13 (0.08, 0.20)	

Table S1 Sites found to be under selection in Influenza

^{*a*} Ancestral codon refers to the allele with the highest frequency at the beginning of the experiment (passage 0). Dashes indicate mutations in non-coding regions ^{*b*} Protein changes are reported in standard nomenclature but comparing the derived codon to the ancestral codon (not the published reference). ^{*c*} Reported is the posterior median of the locus-specific selection coefficient, along with the 99% credible interval.