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Abstract

The expression of some genes is affected by age. To detect such age-related changes,

their expression levels are related to constant marker genes. However, transcriptional noise

increasing with advancing age renders difficult the identification of real age-related changes

because it may affect the marker genes as well. Here, we report a selection procedure for

genes appropriate to normalise the mouse liver transcriptome under various conditions

including age. These genes were chosen from an initial set of 16 candidate genes defined

based on a RNA-sequencing experiment and published literature. A subset of genes was

selected based on rigorous statistical assessment of their variability using both RNA-

sequencing and Nanostring hybridization experiments. The robustness of these marker

genes was then verified by the analysis of 130 publicly available data sets using the mouse

liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our

strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and

Ttr passed all but one assessment and were included into the final set of marker genes to

enhance robustness of normalisation against outliers. Using the geometric mean of expres-

sion of the genes to normalise Nanostring hybridization experiments we reliably identified

age-related increases in the expression of Casein kinase 1δ and 1�, and Sfpq, while the

expression of the glucose transporter Glut2 decreased. The age-related changes were veri-

fied by real-time PCR and Western blot analysis. As conclusion, proper normalisation

enhances the robustness of quantitative methods addressing age-related changes of a

transcriptome.

Introduction

Ageing is the ultimate threat to the survival of an organism and is developing into a health

problem for the society because many more people than before reach an age closer to the maxi-

mal life expectancy [1]. Transcriptional programmes mediate some changes during ageing
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optimizing the metabolism and physiology for the needs of an older organism. However, some

of these programmes also provoke the progressive accumulation of damage, which finally

exceeds the decreasing repair capacity of the body [2]. Interestingly, some processes, for exam-

ple the process generating circadian rhythms are speculated to play a part during the ageing

process. Understanding the potential interactions between the circadian clock and the ageing

process could, therefore, offer new strategies to delay the adverse effects of ageing [3] [4].

Circadian rhythms are generated by interlocked transcriptional and post-translational feed-

back loops driving 24 h rhythmic gene expression [5]. In mammals, complexes of PERIOD

(PER) and CRYPTOCHROME (CRY) proteins generate overt daily rhythms by counterbal-

ancing the transcription factors Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian

Locomotor Output Cycles Kaput (CLOCK) [6]. On the other hand, Bmal1 and Clock rhythmic

expression is mediated by the activating and repressing activity of nuclear receptors of the

RAR-related Orphan Receptors (ROR) and Peroxisome Proliferator-Activated Receptors

(PPAR), and REV-ERB families, respectively [7] [8] [9]. The process is further fine-tuned by

post-translational regulation such as phosphorylation of PER by the Casein kinase (Csnk) 1δ
and 1� [10] [11] to affect stability and cellular location of the proteins adjusting the period

length. To achieve a functional output, the circadian oscillator drives rhythmic expression of

multiple families of transcriptional regulators such as those from the Drosophila Behaviour/

Human Splicing (DBHS) family [12].

The mammalian timing system governs many metabolic, physiological and behavioural

aspects of the daily life [13]. Consequently, external or internal factors modulating this coupled

system might have widespread consequences. Previously, it was shown that aged organisms

display impaired circadian rhythms in regions of the brain [14] and in vitro in fibroblasts [15]

due to reduced neuronal synchronization and yet unknown blood-borne factors, respectively.

Despite this, no gross aberration of the underlying circadian oscillator with advancing age has

been reported to date. This discrepancy may likely be due to the difficulty in detecting such

changes because of the noisy nature of age-related gene expression [16] and the lack of an

established protocol to normalise expression data with age-resistant markers. Historically,

housekeeping genes have been used for this purpose including metabolic enzymes such as

Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and the cytoskeleton component β-actin
[17]. However, in some tissues, these genes are not as constantly expressed with advancing age

as previously thought [18]. Also, an intrinsic problem for normalisation is the noise of gene

expression that can only be overcome by vigorous statistical testing [19].

Here we used centered log-ratio analysis [20] to solve the problem of noise in circadian and

age-related gene expression. From our analyses, we selected a total of seven genes and used

their geometric mean of expression for normalisation. With the obtained increase in robust-

ness, we were able to identify age-related changes within the circadian regulatory network.

Hence, part of the circadian oscillator in the liver is affected by progressing age, which may

impact the orchestration of metabolism and physiology.

Materials and Methods

Animals and ethics statement

Animal care and handling was performed according to the Swiss Law for Animal Experimen-

tation (TschG, SR455) and the declaration of Helsinki as authorized by the Office Vétérinaire

Cantonale de Fribourg (No.2013_32_FR) and approved by the cantonal veterinarian office of

the Canton of Fribourg. Male C57BL/6Rj mice were obtained from a special breeding program

maintained at Janvier (St. Berthevin, France). The median life expectancy of these mice is

about 28 months and their life span about 30 to 32 months [21] [22] [23]. Consequently, mice
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with an age of 3 months we considered as young, mice of 12 months as middle-aged, and of 24

months as aged, because they showed first signs of senescence. The mice were kept with water

and food ad libitum, and a light schedule of 12 h light/12 h dark. Zeitgeber time (ZT) is defined

as ZT0 = lights on, and ZT12 = lights off. Animals were sacrificed under 3% isofluorane/oxy-

gen anesthesia by surgically removing their heads.

Tissue acquisition and RNA extraction

We isolated RNA from livers of mice up to 24 months old. RNA from homogenized liver was

isolated using the NucleoSpin RNA kit from Machery and Nagel (Düren, Germany) and quan-

tified with a Nanodrop 1000 spectrophotometer (NanoDrop Products, Wilmington DE) at 260

nm. The integrity of the RNA samples was verified on 1% agarose bleach gels [24].

RNA-sequencing

For the RNA-sequencing experiment, RNA from four mouse livers taken at ZT2, ZT6, ZT10,

ZT14, ZT18 or ZT22 was taken from 3, 9, 15 or 21 month-old mice (a total of 24 mice per age

class). After extraction and for each age class, 1 μg of the total RNA from each individual sam-

ple was pooled, resulting in four combined samples of 24 μg total RNA. The RNA in these

pools was then digested with 5’-phosphate-dependent RNAse to remove uncapped RNA and

the remaining mRNA purified. After cleavage of the 5’-cap, the bar-coded sequencing linkers

were added, the library amplified and subjected to massive-parallel SOLiD sequencing [25].

Forward sequences (35 bp) for all four samples were produced on one lane using the SOLiD

5,500 xl sequencing platform. The obtained reads were processed with the Genomic work-

bench (CLC Bio, Aarhus, Denmark) and mapped to the annotated Mus musculus mm9 refer-

ence sequence http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/chromFa.tar.gz

using these stringent conditions (similarity of 0.95 and length fraction of 0.95, i.e. allowing

roughly one mismatch or size difference). The mappings were subsequently verified using the

IGV2.0 integrative Genomics Viewer (IGV, Broad Institute, Cambridge MA). We focused

only on genes with annotated first exon and omitted from the analysis un-annotated peaks,

peaks in small noncoding RNAs, intronic peaks, and anti-sense transcription start sites. The

number of reads per transcription start site was extracted from genes that were present at least

20 times in one of the libraries. We identified a total of 1,444 5’-ends of mRNAs to be used in

this study (S1 Table).

Nanostring hybridization

The Nanostring technology allows for the detection of individual RNA molecules without an

amplification bias [26]. Here we used this technology to quantify expression levels of 52 genes

using probes designed and synthesized by Nanostring consisting of complementary DNA

probes spanning exon-exon boundaries to map specifically to mRNA (S2 Table). Each probe

consisted of a pair of a 5’-primer bearing a biotin label and a 3’-primer bearing a bar code in

form of a specific fluorescent tag. If both primers hybridize to their corresponding mRNA,

then the fluorescent tag can be bound to a streptavidin-coated support to identify its probe-

specific label. We conducted Nanostring quantification from liver tissue from animals of eight

different age groups: 3, 6, 9, 12, 15, 18, 21 and 24 months. Per age group, we took samples

from twelve evenly spaced time points (ZT0 to ZT22 with 2 h intervals), resulting in 24 sam-

ples quantified individually. For each sample, 300 ng of RNA were hybridized to a pool of

Nanostring oligo pairs at the Genomics Platform of the university of Lausanne, Switzerland.

Each hybridization experiment was conducted in the presence of positive controls of different

concentrations to properly normalise the counts of mRNA to concentrations in the original
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sample. Specifically, and following recommendations from [26], we first inferred the proper

normalisation constant cs;i for each sample s and for each positive control i. We then com-

bined these individual measures into a single normalisation constant ci by taking the geomet-

ric mean across all individual constants for that sample.

Analysis of RNA-sequencing experiments from literature

We downloaded RNA-sequencing data of 3 previously published RNA-sequencing experi-

ments [27] [28] [29] with the reference numbers GEO:GSE57809,GEO:GSM723772 and GEO:

GSE48109 from the Geo Omnibus database. The raw reads were mapped and aligned to the

mouse genome (UCSC version mm9) using Tophat [30], and uniquely mapped sequences

from the output files were then used to obtain read counts using HTseq-count [31].

Analysis of data mining from literature

We used RNA-sequencing and DNA microarray data from the database Genevestigator [32]

with a total of 380 studies using mouse with 9,411 samples, 814 conditions and 339 different

genotypes. 130 experiments concerning liver gene expression were exported. We performed

gene perturbation analysis on our selection of 16 genes using a cumulative distribution

function.

Centered log-ratio analysis

Log-ratio transformations are the method of choice for distance-based analysis of composi-

tional data [20]. Here we conducted centered log-ratio transformations to compare genes in

their variability and overall level of expression. Let xi = x(1)i, . . ., x(N)i be a vector of expression

measurements for N genes under condition i (e.g., a specific age group). The so called centered

log-ratio (clr) is then defined by: clr(xi) = log(x(1)i/g(xi)), . . ., log(x(N)i/g(xi)); where g(xi) is the

geometric mean of the original data vector xi. The clr analysis is related to the fold-change

analysis frequently applied to expression data. Specifically, the distance between clr trans-

formed expression levels of the same gene corresponds to the logarithm of the fold-change if

the original datasets were normalised such that they share the same geometric mean. Calculat-

ing the variance in the clr expression levels across many conditions is thus a natural extension

of the fold-change analysis to more than two comparisons.

Repeated-measures ANOVA

To perform the analysis of two different ages at all time points we used the R software (http://

www.R-project.org/) and specifically the lme function to calculate the repeated-measures

ANOVA for the two data sets. Since we cope here with a multiple comparisons situation, a

Bonferroni’s correction of the p-value should be performed, i.e. the p-value to indicate signifi-

cance would be 0.05/36 = 0.0013888.

Two-way ANOVA

To estimate the influence of interaction, age and time on the data sets obtained from young

and very old animals we used the program PRISM5 (GraphPad software, San Diego, CA). A

Bonferroni post test was performed to compare the column pairs and significant changes indi-

cated (�: p< 0.05, ��: p< 0.01, ���: p< 0.001).

Age-Related Changes in Gene Expression
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Quantification of specific genes by real-time PCR

Reverse-strand cDNA was synthesised using Superscript II (Life Technologies, Carlsbad CA)

starting from 0.5 μg of total RNA and specific genes detected by real-time PCR with specific

primer/probe combinations (S3 Table). For normalisation we used the geometric mean of

expression of Atp5h, Gsk3β, and Sirt2.

Preparation of protein extracts

Liver nuclei were prepared by centrifugation through 2M sucrose cushions as described [33]

and liver nuclear extracts prepared. About 20 μg of nuclear extract was separated on 7% SDS-

polyacrylamide gels, transferred to BA83 nitrocellulose membranes and Western blot per-

formed. Antibodies used were anti-RNA polymerase II (ab817, Abcam, Cambridge, UK), anti-

Sfpq (kind gift from Steven Brown, Zurich), and anti-Csnk1δ (sc-55553, Santa Cruz Biotech-

nology, Dallas, TX). Specific antibody:antigen complexes were detected with matching HRP-

conjugated secondary antibodies and Western Bright Sirius enhanced chemiluminescence

(Advansta, Mento Park, CA) using an Azure C500 machine (Azure Biosystems, Dublin, CA)

and increasing exposure times of 30 sec each. All images were analysed using ImageJ (http://

imagej.nih.gov/ij/index.html).

Results

Rationale for the selection of candidate genes

During the analysis of age-related changes in the liver transcriptome, we realized that these

changes were not reliably detectable due to transcriptional noise. To overcome this experimen-

tal problem, we therefore began by manually curating a set of potential candidate genes for

normalisation. We included 9 genes selected from a pilot RNA-sequencing experiment com-

paring 3 with 15 month-old animals (S1 Table). To ensure that differences between the age

classes were not affected by differences in daily rhythms, we pooled RNA extracted from six

different time points throughout the day. The genes were chosen based on the following two

criteria: i) their expression was sufficiently large to ensure accurate quantification, and ii) they

showed a similar fold-change as Gapdh, a gene generally used to normalise gene expression in

this tissue [17]. The genes selected this way were Aox3, Atp5h, Gapdh, S100a1, Tspo, Ttr,
Tomm7, Tprkb and Pqbp1.

We then complemented this list with the two genes H3f3a and H3f3b encoding for the his-

tone H3 variant H3.3 and the gene Nr3c1/Gr, since the accumulation of these classes of pro-

teins was previously described to be unaffected by age [34] [35]. Finally, we added four genes

we suspected to be stable across age from experience of working with circadian gene expres-

sion over many years: Gsk3β, Nono, Rorα, and Sirt2. We then set out to assess the properties of

these 16 genes more rigorously and systematically by comparing their expression profiles

across age with those of other genes using RNA-sequencing and Nanostring hybridization

experiments, as well as public data.

Selection of marker genes by RNA-sequencing experiment

To monitor the expression of our candidate genes over age, we extended the RNA-sequencing

experiment by comparing gene expression in liver tissue of mice of 3, 9, 15 and 21 months of

age. To assess variability in gene expression across age for each gene in the transcriptome, we

conducted centered log-ratio analysis, which is used for the analysis of compositional data

such as derived from RNA-sequencing and Nanostring hybridization experiments and partic-

ularly suitable in the absence of known normalisation markers [20]. This analysis revealed a
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spectrum of variability as quantified by the variance in centered log-ratios (clr) with some

genes showing more than 3 orders of magnitude more variability across age classes than others

(Fig 1).

Genes also differed greatly in the average expression level, as measured by the mean clr

across ages (Fig 1). As confirmed, most of our candidate genes showed little variation and gen-

erally large expression levels. Some of our candidate genes, however, showed surprisingly large

variation across age classes, in particular the gene H3f3b. To further illustrate this, we calcu-

lated pair-wise fold-changes between different ages (6 combinations), which also highlighted

considerable variation in H3f3b (S1 Fig). We considered candidate genes to pass this initial

assessment if their average gene expression was above and their variance in expression below

the median of these measures of all other genes in the genome. Out of all 16 genes considered,

13 passed these criteria: Aox3, Atp5h, Gapdh, Gsk3β, H3f3a, Pqbp1, Rorα, S100a1, Sirt2,

Tomm7, Tprkb, Tspo, and Ttr.

Selection of marker genes by Nanostring hybridization experiment

We next compared the expression profiles of our candidate genes by an independent experi-

ment using Nanostring hybridization. Since Nanostring hybridization experiments can only

be conducted on a relatively small, predefined set of genes, we chose to compare all our candi-

date genes against i) known circadian genes, ii) genes known to modify the circadian oscillator,

Fig 1. Analysis of the variance of expression of the candidate genes using RNA-sequencing data. For

each gene was calculated the variance and mean across four experimental conditions (3, 9, 15 and 21 month-

old mice) of the centered log-ratio (clr) of their expression (grey dots). The 16 candidate genes are highlighted

and the median variance clr and median mean clr across all genes are shown as dashed lines.

doi:10.1371/journal.pone.0169615.g001
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as well as iii) genes the expression of which is directly affected by the circadian oscillator. The

Nanostring hybridization experiment, however, allowed us to increase the resolution of our

assessment by doubling both the number of age classes as well as time points per day, and to

measure 52 individually measured probe sets (S2 Table).

To discriminate between genes with nearly constant and variable expression, we again cal-

culated the variance in the clr across individual samples. As expected, most of our candidate

genes showed variances very close to zero, and much lower variances than all other genes mea-

sured along (Fig 2). We considered candidate genes to pass this assessment if their variance of

centered log-ratios was lower than that of the least variable circadian gene Cry2 (Fig 2). This

way we identified 11 out of 16 candidate genes to be stable across age classes (Table 1).

The expression of the genes considered stable in this experiment were highly correlated (all

between 0.35 and 0.86, S2 Fig), further corroborating that the variance found is largely due to

experimental noise that is affecting these genes very similarly, and hence can be controlled for

by using these genes for normalisation. In contrast, expression levels were not or only margin-

ally correlated between genes we found to exhibit large variation (S2 Fig).

Validation with publicly available RNA-sequencing data

To further strengthen our results, we assessed the stability of expression of our candidate genes

in data from three publicly available RNA-sequencing experiments. These experiments com-

pared gene expression in i) the liver of 3 and 21-month old mice, ii) between many different

mouse tissues, or iii) between liver derived from male and female mice. These experiments

were chosen because they allowed us to both replicate as well as generalize results from our

own data. Just as for our own experiments, we calculated the variance and mean of the clr

across replicates for each experiment. In line with our previous results, most of our candidate

genes were found to exhibit little variance across replicates but above median expression levels

(Fig 3). However, some genes were surprisingly outliers and showed much elevated variation

Fig 2. Analysis of the variance of expression of the candidate genes using Nanostring hybridization data. The

variance of the clr of the expression level for each gene was calculated across all experimental conditions, i.e. eight

different ages and twelve time points each in duplicate (N = 192). Genes are sorted from lowest to highest variance and the

cut off to pass the assessment is indicated by a dashed line.

doi:10.1371/journal.pone.0169615.g002
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under specific conditions. The expression of the genes Gapdh, H3f3a and Aox3, for instance,

were found to vary greatly between males and females. Similarly, the gene Gr was found to be

very variable across different tissues. Applying the same filters as above, we considered all

genes to pass these assessments if their expression levels were above median, but their variance

in expression below median when compared to the set of all other genes measured in each

study. Only 10 genes passed these requirements in all of the three data sets in which they were

measured: Atp5h, Gsk3β, Gr, H3f3b, Nono, Pqbp1, Sirt2, Tprkb, Tspo, and Ttr.

Fig 3. Centered log-ratio analysis of three publicly available RNA-sequencing experiments. We conducted clr analysis on three publicly available

RNA-sequencing experiments that compared the liver transcriptome of 3 and 21 month-old mice [GEO: GSE57809], between different mouse tissues

[GEO:GSM723772], and the liver transcriptome of male and female mice [GEO:GSE48109]. For each study, the variance and mean across all

experimental conditions of the clr of the expression is plotted for each gene. The 16 candidate marker genes are highlighted and the median variance clr

and median mean clr across all genes are shown as dashed lines.

doi:10.1371/journal.pone.0169615.g003

Table 1. Summary of quality assessments.

Gene RNA-Seq Nanostring GSE57809 GSM723772 GSE48109 Data Mining

Atp5h X X X X X X

Gsk3β X X X X X X

Sirt2 X X X X X X

Nono - X ND X X X

Tprkb X X X X X -

Tspo X X X X X -

Ttr X - X X X X

Gr - X ND X X -

H3f3a X X - - X X

Pqbp1 X - ND X X -

Rorα X X ND X - -

S100a1 X X - X X -

Aox3 X - X X - -

H3f3b - - X X X -

Tomm7 X X - X - -

Gapdh X - - X - -

X: passed; -: failed; ND: not detectable.

doi:10.1371/journal.pone.0169615.t001
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Analysing the stability of the marker genes by meta-analysis

To assess the stability in gene expression of our candidate genes on an even larger scale, we

used the data mining software Genevestigator to retrieve fold-changes for each candidate gene

in a large series of 130 RNA-sequencing and DNA microarray experiments using mouse liver

tissue. The cumulative distributions of these fold-changes are shown in Fig 4. In line with our

previous results, most genes were found to have rather small fold-changes in the majority of

studies. The gene with the least fold-change overall was Ttr, followed by Atp5h and H3f3a. For

all of those genes we found that the fold-change was below 1.15 in more than 90% of all studies.

In contrast, the fold-change reported for the gene Aox3 was above 1.15 in more than 50% of

the cases. We considered all genes to pass this assessment if their fold-change was quantified

below 1.2 in more then 90% of all studies. Two genes, Atp5h and Ttr actually showed a fold-

change of maximal 1.2 over all experiments (Fig 4).

Selection of a final set of normalisation genes

A summary of our results is given in Table 1. Overall, only three genes (Atp5h, Gsk3β, and

Sirt2) passed all of our assessments indicating that their expression was not affected by a wide

variety of conditions including circadian changes and age. We thus consider the set of these

three genes as our core normalisation set. An additional four genes (Nono, Tprkb, Tspo, and

Ttr) passed all but one assessment, and we will consider them, together with the core genes, as

an extended set of normalisation genes. Importantly, our set of normalisation genes does not

include Gapdh, since the expression of this gene was found to be rather variable in several

Fig 4. Fold-changes observed in 130 mouse liver transcriptome experiments. For each gene, we

calculated and plotted the cumulative distribution of the fold-changes observed in a large set of 130

transcriptome experiments using mouse liver tissue. We considered candidate genes to pass this

assessment if their fold-change was < 1.2 in 90% of all studies (indicated by dashed lines).

doi:10.1371/journal.pone.0169615.g004
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cases (Table 1). This thus suggests that additional power to detect true changes in expression

can be gained by using the normalisation genes recommended here, instead of Gapdh alone.

Identification of age-related changes between 3 and 24 month-old mice

We next analysed all of the other genes from our Nanostring experiment for age-related

changes in their expression. To do so, we normalised the raw data based on the geometric

mean of the normalisation constants obtained individually for each of the seven genes in our

extended set [26] [36]. To obtain the most pronounced differences, we decided to compare 3

with 24 month-old mice. The analysis confirmed that most (32) of the 36 genes analysed in our

experiment were not or only faintly affected by age at a Bonferroni-corrected p-value for multi-

ple comparisons of p> 0.0014 using repeated-measures ANOVA (N = 24; S3 Fig). Hence, the

statistical methodology was powerful enough to cope with the experimental noise observed in

our experiment considering that many of the genes were expressed with circadian amplitude.

But this stringent way of normalisation also identified four genes for which expression was

significantly affected by age at the p-value threshold of p< 0.0014 (Repeated-measures

ANOVA, N = 24; S3 Fig) and 1.25 to 1.52 fold changes (Table 2). By contrast, there were no

such significant changes comparing 3 with 12 month-old mice (S4 Fig), suggesting that the

identified changes in the four genes were emerging at a later stage and hence represent age-

related changes in expression. Genes found to increase their expression in 24 month-old mice

were the Casein kinases 1δ and �, and the DBHS family factor Sfpq, while the glucose trans-

porter Glut2 was decreased in its expression.

Verification of age-related changes by real-time PCR and Western blot

To independently verify our findings, we next quantified the expression of the age-affected

genes by real-time PCR (Fig 5A, Table 2). Surprisingly the three genes identified as up-regu-

lated in 24 month-old mice displayed a similar pattern of accumulation over the circadian

cycle, i.e. a more or less constant accumulation in 3 month-old animals but rhythmic accumu-

lation with similar phase in 24 month-old animals. By contrast, the circadian amplitude of

Glut2 was reduced with advancing age. We found a strong interaction between the expression

series of all genes and age (two-way ANOVA, p< 0.001, Fig 5A). Not surprisingly, time was

also identified as a significant source of variation (two-way ANOVA, p< 0.01).

To verify that the observed changes in expression translate into real differences in protein

abundance, we conducted Western blot experiments using nuclear extracts obtained from liv-

ers of 3 and 24 month-old mice. A protein chosen as control, RNA Polymerase II (RPII),

did not display gross changes in its accumulation over time and age and was consequently

exploited for normalization purposes (Fig 5B). Using this method, an increase of Csnk1δ and

Sfpq in the nucleus became apparent with fold-change of 1.47 for Sfpq and 7.44 for Csnk1δ

Table 2. Significant age-related changes 3 versus 24 month-old mice.

Gene p-Value (r-m ANOVA) Fold Change (Nanostring) Fold Change (RT-PCR)

Csnk1� 0.00018 1.52 1.77

Glut2 0.00035 0.74 0.80

Sfpq 0.0005 1.33 1.38

Csnk1δ 0.0012 1.25 1.42

p-Value: p-value as obtained by the repeated-measures ANOVA; Fold Change: average fold-change as measured by the Nanostring hybridisation

experiment, or real-time PCR.

doi:10.1371/journal.pone.0169615.t002
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averaged over all 6 time points (Fig 5C). These results confirm that the subtle increases as

observed for gene expression result in detectable increases of the corresponding protein levels,

and thus demonstrate the biological relevance of these changes.

Discussion

Global and more restrained transcriptome analyses are now routinely used and new methods

such as RNA-sequencing and Nanostring hybridization, respectively, are very sensitive to

detect changes of a given transcriptome in response to different experimental conditions.

However, accurate inference always relies on proper normalisation, without which the inferred

expression changes may only be due to experimental noise [19]. Here, we report a set of nor-

malisation genes our analysis suggests is adequate to study gene expression in the mouse liver

[37] [38]. These genes were selected using a rigorous statistical approach, the centered log-

ratio analysis, which is commonly used when dealing with compositional data, and which is a

natural extension of the often used fold-change analysis to more than two experimental set-

tings [20]. Applying this statistical framework, we tested a set of candidate genes for low vari-

ance in expression against a variety of conditions.

Fig 5. Validation of gene expression by real-time PCR and protein accumulation by Western blot. A)

fold-change of expression of the indicated genes over the circadian cycle as measured by real-time PCR; B)

accumulation of Csnk1δ and Sfpq in nuclear extracts with the controls RNA polymerase II (RPII); C)

quantification of Sfpq and Csnk1δ against RPII. Mean ± STD, n = 4, Bonferroni Post test, *: p < 0.05,

**: p < 0.01, ***: p < 0.001.

doi:10.1371/journal.pone.0169615.g005
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First, and using data we generated from both the RNA-sequencing and Nanostring hybrid-

ization experiments, we showed that the expression of the proposed set of normalisation genes

is sufficiently large for accurate quantification, yet stable throughout the day (i.e. to be unaf-

fected by the circadian clock) and does not change with age. Second, and using previously

published data sets, we could not only confirm these results, but also further generalize the use-

fulness of our set of genes by showing that their expression was also constant across the sexes

and across different mouse tissues. Finally, we showed that these genes were constant in a

majority of conducted transcriptome experiments with mouse liver tissue to date. Hence,

this set of normalisation genes represents the way to cope with the problem of transcriptional

noise as observed with increased age [16].

Our final set of seven normalisation genes consisted of the genes Atp5h, Gsk3β, Nono, Sirt2,

Tprkb, Tspo, and Ttr. Interestingly, we found the gene Gapdh, which has been commonly used

as the single gene for normalisation [17], to be much more variable than these genes, including

when comparing expression patterns between mice of different age. Hence, we can confirm

previous findings that Gapdh may not be an ideal gene for normalisation in this tissue [18]. In

addition, and as was previously reported, we found that due to experimental noise, a single

gene is unlikely to be sufficient for proper normalisation. Instead, and following previous rec-

ommendations [39], we advocate using the geometric mean of a number of marker genes, ide-

ally the seven genes as identified in our study. In this way, the impact of one or two outliers of

expression is mathematically filtered out, reducing the noise of the analysis.

In order to identify differences in gene expression between 3 and 24 month-old mice, we

thus first calculated the normalisation constants for each marker gene individually, and then

used the geometric mean of those constants for normalisation [39]. Employing here for the

first time such a stringent normalisation method on circadian expression data, we discovered

the expression of a new class of genes to be affected by age, namely Csnk1δ and Csnk1� (Fig

5A). Csnk1δ and Csnk1� phosphorylate components of the circadian oscillator to set the pace

of oscillation [10] [11]. Interestingly, a mutation in Csnk1� reducing its enzymatic activity was

identified in hamster [40]. This mutated form of Csnk1� was later found to increase the life

expectancy of the hamster [41]. Hence, we may speculate that an age-related increase of Csnk1

activity could be harmful for an organism over time. However, further experiments are neces-

sary to understand the impact of this increase in expression of Csnk1δ and Csnk1� on the post-

translational regulation of the circadian oscillator with advancing age. Also, the effect of this

increase on other described targets of Csnk1 phosphorylation such as p53 and β-catenin has to

be considered [42] [43]. By contrast, an influence of Sfpq or other DBHS family factors on the

aging process has not yet been observed [12] and it is worth to further investigate the role of

these factors in 24 month-old and even older mice.

Surprisingly, the expression of Glut2 was decreased (Fig 5A). The expression of Glut2 was

previously shown to be regulated by BMAL1 affecting the glucose metabolism of the liver [44].

Hence, it is tempting to speculate that the reduction of Glut2 was mediated by a reduction of

the activity of the BMAL1/CLOCK heterodimer. However, we did not detect down-regulation

of these factors on the level of mRNA accumulation (S3 Fig). Also, we did not observe down-

regulation of any other BMAL1/CLOCK-regulated gene such as Per1, Per2, Per3, Gm129, Dbp,

or Tef (S3 Fig), rendering it likely that BMAL1/CLOCK activity did not decline in 24 month-

old mice. Taken together, the reason for the down-regulation of Glut2 remains unknown. On

the other hand, the three genes significantly up-regulated with age showed a circadian accu-

mulation profile in 24 month-old mice reminiscent of genes regulated by the stabilizing loop

[7] [8] [9] (Fig 5A). Again, we did not observe up-regulation of genes involved in this kind of

regulation such as Rorα, Rorγ, Pparα, or Pparγ, or down-regulation of the corresponding

repressors Rev-Erbα and Rev-Erbβ (S3 Fig). Interestingly, in a previous study it was found that
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Pparα and Pparγ occupied more chromatin binding sites in the livers of 21 month-old mice

affecting the lipid metabolism and causing steatosis [27]. This observation could point towards

post-translational processes influencing the activity of the aforementioned nuclear receptors.

However, further analysis is necessary to understand the impact of the identified age-related

changes on the circadian oscillator in other organs and the overall organism.

Conclusion

Here we report a set of seven genes suitable for normalisation of transcriptome analysis experi-

ments using mouse liver. These genes (Atp5h, Gsk3β, Nono, Sirt2, Tprkb, Tspo, and Ttr) were

selected based upon a rigorous statistical evaluation of their overall expression levels and their

variance in expression across a multitude of experimental conditions, including circadian

changes, sex and, most importantly, age. We found these genes to be more appropriate for nor-

malisation than using the gene Gapdh, which exhibited more variance in its expression. Our

results suggest that the sensitivity of assays to study differences in gene expression in mouse

liver can be much improved by normalising the data with the larger set of marker genes pro-

posed here. With the increased robustness based on our normalisation, we were able to detect

age-related changes of the circadian regulatory network.

Supporting Information

S1 Fig. Comparison of gene expression changes between different age classes. The data

were retrieved from the RNA-sequencing experiment. Shown are the fold-changes in gene

expression compared between all age groups for the candidate genes. All fold-changes were

calculated after clr normalisation.

(TIF)

S2 Fig. Correlation analysis of the expression of candidate genes. Shown are the pair-wise

correlations between all pairs of candidate genes. All correlations were calculated from the raw

counts from the Nanostring hybridization experiment after normalisation with the positive

controls, but without any further normalisation. A colour-coded scale represents maximal cor-

relation (positive blue, negative red) to no correlation (white).

(TIF)

S3 Fig. Comparison of 3 and 24 month-old mice. Compared are the normalised mRNA

counts from the Nanostring hybridization experiment with 12 different time points in dupli-

cates. The mRNA counts at the same time points are connected by a line. A red line indicates

the difference in the mean expression between the two different age classes. Significance was

assessed by repeated-measures ANOVA and the p values indicated. Significant p-values

(p< 0.0014) are indicated in red.

(TIF)

S4 Fig. Comparison of 3 and 12 month-old mice. The normalised mRNA counts from the

Nanostring hybridization experiment of the 36 genes were compared from 3 and 12 month-

old animals. The mRNA counts at the same time points are connected by a line. A red line

indicates the difference in the mean expression between the two different age classes. Signifi-

cance was assessed using repeated-measures ANOVA and the p values indicated.

(TIF)

S1 Table. List of identified genes in the RNA-sequencing experiment comparing 3 and 15

month-old animals.

(XLS)

Age-Related Changes in Gene Expression

PLOS ONE | DOI:10.1371/journal.pone.0169615 January 9, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169615.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169615.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169615.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169615.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169615.s005


S2 Table. List of Nanostring probe pairs and their location within the genes.
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