120 research outputs found

    Marinas may act as hubs for the spread of the pseudo-indigenous bryozoan <em>Amathia verticillata</em> (Delle Chiaje, 1822) and its associates

    Get PDF
    The spaghetti bryozoan Amathia verticillata, formerly known as Zoobotryon verticillatum, was first described in 1822 from Naples, Italy, although this species was already present in 1807 at Cadiz, Spain. This ctenostome has long been considered a native species in the Mediterranean Sea but it has recently been suggested to be of Caribbean origin. It is most likely to have been introduced by vessels as hull fouling. This pseudo-indigenous species, i.e. a non-indigenous species (NIS) having been perceived to be native, has been found in several marinas and harbours within the Mediterranean Sea. In November 2014, this bryozoan species was abundant in the La Grande Motte marina on the south coast of France. Several thousand colonies were estimated to be present within this marina attached to the floating pontoon units that supported a floating boardwalk. Of the berthed craft examined, 31% were fouled with this species, and it was occasionally a prominent fouling species. Several macroinvertebrate species were associated with A. verticillata colonies, including some NIS, Paracerceis sculpta, Paranthura japonica and Caprella scaura, that are recorded for the first time from the Mediterranean coast of France. A. verticillata might support their transfer elsewhere by providing a habitat and substrate when attached to vessel hulls

    Marinas may act as hubs for the spread of the pseudo-indigenous bryozoan <em>Amathia verticillata</em> (Delle Chiaje, 1822) and its associates

    Get PDF
    The spaghetti bryozoan Amathia verticillata, formerly known as Zoobotryon verticillatum, was first described in 1822 from Naples, Italy, although this species was already present in 1807 at Cadiz, Spain. This ctenostome has long been considered a native species in the Mediterranean Sea but it has recently been suggested to be of Caribbean origin. It is most likely to have been introduced by vessels as hull fouling. This pseudo-indigenous species, i.e. a non-indigenous species (NIS) having been perceived to be native, has been found in several marinas and harbours within the Mediterranean Sea. In November 2014, this bryozoan species was abundant in the La Grande Motte marina on the south coast of France. Several thousand colonies were estimated to be present within this marina attached to the floating pontoon units that supported a floating boardwalk. Of the berthed craft examined, 31% were fouled with this species, and it was occasionally a prominent fouling species. Several macroinvertebrate species were associated with A. verticillata colonies, including some NIS, Paracerceis sculpta, Paranthura japonica and Caprella scaura, that are recorded for the first time from the Mediterranean coast of France. A. verticillata might support their transfer elsewhere by providing a habitat and substrate when attached to vessel hulls

    Horizon scanning of potential threats to high-Arctic biodiversity, human health and the economy from marine invasive alien species: A Svalbard case study

    Get PDF
    The high Arctic is considered a pristine environment compared with many other regions in the northern hemisphere. It is becoming increasingly vulnerable to invasion by invasive alien species (IAS), however, as climate change leads to rapid loss of sea ice, changes in ocean temperature and salinity, and enhanced human activities. These changes are likely to increase the incidence of arrival and the potential for establishment of IAS in the region. To predict the impact of IAS, a group of experts in taxonomy, invasion biology and Arctic ecology carried out a horizon scanning exercise using the Svalbard archipelago as a case study, to identify the species that present the highest risk to biodiversity, human health and the economy within the next 10 years. A total of 114 species, currently absent from Svalbard, recorded once and/or identified only from environmental DNA samples, were initially identified as relevant for review. Seven species were found to present a high invasion risk and to potentially cause a significant negative impact on biodiversity and five species had the potential to have an economic impact on Svalbard. Decapod crabs, ascidians and barnacles dominated the list of highest risk marine IAS. Potential pathways of invasion were also researched, the most common were found associated with vessel traffic. We recommend (i) use of this approach as a key tool within the application of biosecurity measures in the wider high Arctic, (ii) the addition of this tool to early warning systems for strengthening existing surveillance measures; and (iii) that this approach is used to identify high-risk terrestrial and freshwater IAS to understand the overall threat facing the high Arctic. Without the application of biosecurity measures, including horizon scanning, there is a greater risk that marine IAS invasions will increase, leading to unforeseen changes in the environment and economy of the high Arctic

    Identification of the invasive form of Corbicula clams in Ireland

    Get PDF
    The basket clam genus, Corbicula, commonly known as the Asian clam, has become one of the most internationally high-profile and widespread aquatic invasive species. This genus is now considered to comprise a polymorphic species complex. The international invasion of Corbicula is characterised by four lineages, each fixed for one morphotype, genotype and haplotype combination: the American form (A) and European round form (R), the American form (C) and European saddle from (S), American form B, form round light colour (Rlc) and an intermediate between forms R and S known as Int. We investigated the genetic and morphometric makeup of each Irish population in order to establish which invasive lineages were present so as to identify the number of introductions to Ireland. A combination of morphometric, mitochondrial cytochrome oxidase subunit I (mtCOI) gene analysis and microsatellite markers were used to determine the invasive form at each Irish site. All Irish Corbicula samples conformed morphometrically to the invasive form A/R. All mtCOI sequences retrieved for 25 Irish individuals were identical to the international A/R form, while microsatellite markers again showed a common clustering with the international A/R forms of Corbicula. The combined approach of morphometries, total genomic DNA and microsatellite markers indicate only one form of Corbicula invaded Ireland; the international A/R form

    Classification of non-indigenous species based on their impacts: Considerations for application in marine management

    Get PDF
    Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management

    The enlargement of the Suez Canal and introduction of non-indigenous species to the Mediterranean Sea

    Get PDF
    The Suez Canal is one of the most important waterways in the world – during the last year 17,148 ships passed through the Canal – reducing emissions, saving time, and operating costs to shippers. The rapid increase in ship size from the “Post-Suezmax” (> 12,000 TEU) to the latest container vessels (> 19,000 TEU) now requires enlargements of port facilities and canals. A project of this magnitude, and with potentially negative environmental outcomes, requires a transparent and scientifically sound “Environmental Impact Assessment” (EIA). An explicit obligation on Parties to the Convention on Biological Diversity (https://www.cbd.int/doc/ legal/cbd-en.pdf) was made to consider transboundary impacts on biodiversity, particularly those associated with invasive non-indigenous species

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change
    • …
    corecore