340 research outputs found

    The inherent instability of leveed seafloor channels

    Get PDF
    New analytical models demonstrate that under 2 aggradational flow conditions seafloor channel-levee systems are inherently unstable; both channel area and stability necessarily decrease at long timescales. In time such systems must avulse purely through internal (autogenic) forcing. Although autogenic instabilities likely arise over long enough time for additional allogenic forcing to be expected, channel-levee sensitivity to variations in flow character depends on the prior degree of system evolution. Recalibrated modern Amazon Fan avulsion timings are consistent with this model, challenging accepted interpretations of avulsion triggering

    History matters: ecometrics and integrative climate change biology

    Get PDF
    Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time—an approach we call ‘ecometrics’. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing

    Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    Get PDF
    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. The entirely submarine Protector Shoal area, close to the northern limit of the arc, forms a 55 km long east–west-trending seamount chain that is at least partly of silicic composition. The seamounts are comparable to small subaerial stratovolcanoes in size, with volumes up to 83 km3, indicating that they are the product of multiple eruptions over extended periods. Zavodovski, Visokoi and the Candlemas island group are the summits of three 3–3.5 km high volcanic edifices. The bathymetric data show evidence for relationships between constructional volcanic features, including migrating volcanic centers, structurally controlled constructional ridges, satellite lava flows and domes, and mass wasting of the edifices. Mass wasting takes place mainly by strong erosion at sea level, and dispersal of this material along chutes, probably as turbidity currents and other mass flows that deposit in extensive sediment wave fields. Large scale mass wasting structures include movement of unconsolidated debris in slides, slumps and debris avalanches. Volcanism is migrating westward relative to the underlying plate and major volcanoes are asymmetrical, being steep with abundant recent volcanism on their western flanks, and gently sloping with extinct, eroded volcanic sequences to their east. This is consistent with the calculated rate of subduction erosion of the fore-arc

    Selection on stability across ecological scales

    Get PDF
    Much of the focus in evolutionary biology has been on the adaptive differentiation among organisms. It is equally important to understand the processes that result in similarities of structure among systems. Here, we discuss examples of similarities occurring at different ecological scales, from predator–prey relations (attack rates and handling times) through communities (food-web structures) to ecosystem properties. Selection among systemic configurations or patterns that differ in their intrinsic stability should lead generally to increased representation of relatively stable structures. Such nonadaptive, but selective processes that shape ecological communities offer an enticing mechanism for generating widely observed similarities, and have sparked new interest in stability properties. This nonadaptive systemic selection operates not in opposition to, but in parallel with, adaptive evolution

    Long-term patterns of body mass and stature evolution within the hominin lineage.

    Get PDF
    Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo, stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5-0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi (ca 0.3 Ma) and Homo floresiensis (ca 100-60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo. At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo

    Multi-level selection and the issue of environmental homogeneity

    Get PDF
    In this paper, I identify two general positions with respect to the relationship between environment and natural selection. These positions consist in claiming that selective claims need and, respectively, need not be relativized to homogenous environments. I then show that adopting one or the other position makes a difference with respect to the way in which the effects of selection are to be measured in certain cases in which the focal population is distributed over heterogeneous environments. Moreover, I show that these two positions lead to two different interpretations – the Pricean and contextualist ones – of a type of selection scenarios in which multiple groups varying in properties affect the change in the metapopulation mean of individual-level traits. Showing that these two interpretations stem from different attitudes towards environmental homogeneity allows me to argue: a) that, unlike the Pricean interpretation, the contextualist interpretation can only claim that drift or selection is responsible for the change in frequency of the focal trait in a given metapopulation if details about whether or not group formation is random are specified; b) that the traditional main objection against the Pricean interpretation – consisting in arguing that the latter takes certain side-effects of individual selection to be effects of group selection – is unconvincing. This leads me to suggest that the ongoing debate about which of the two interpretations is preferable should concentrate on different issues than previously thought

    Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes

    Get PDF
    [1] The extents of volcanic island shelves result from surf erosion, which enlarges them, and volcanic progradation, which reduces them. However, mass‐wasting, tectonics and sediment deposition also contribute to their morphology. In order to assess the relative significance of these various processes, we have mapped in detail Faial Island's shelf in the Azores archipelago based on interpretation of geophysical and geological data. The nearshore substrates of the island, down to 30–50 m depth, are rocky and covered by volcaniclastic boulder deposits formed by surf action on now‐submerged lava flows. Below those depths, sandy and gravel volcaniclastic beds dominate, building clinoforms up to the shelf edge. In some sectors of the coast, prograding lava has narrowed the shelf, but, in contrast to nearby Pico Island, we find fewer submarine‐emplaced lavas on the shelf. In this island, we interpret the distance between the coastline and the shelf edge as almost entirely a result of a straightforward competition between surf erosion and lava progradation, in which erosion dominates. Therefore shelf width can be used as a proxy for coastline age as well as for wave energy exposure. The stratigraphy of shelf deposits in boomer seismic data is examined in detail to assess the roles of different sediment sources, accommodation space and wave exposure in creating these deposits. We also show evidence of mass‐wasting at the shelf edge and discuss the possible origins of slope instability. Finally, we discuss the contributing role of tectonics for the development of the shelf.publishe
    corecore