14 research outputs found

    Strategic Leadership Styles and Employee Engagement in the Telecommunication Sector of Ghana

    Get PDF
    This paper investigates leadership styles and their effect on employee engagement. The study was a cross-sectional. Data were collected from employees in the telecommunications sector of Ghana. A sample size 200 employees was used. Multiple regression was the main statistical tool employed to achieve the study objects. It was established that individualized consideration, inspirational motivation and intellectual stimulation have positive effect and correlation with employee engagement except idealized influence that has an insignificant relationship. Contingent rewards and passive management by exception showed positive effect on engagement, except active management by exception that has an insignificant relationship. On the whole, leadership style was found to be a significant determinant of employee engagement. Keywords: transactional leadership style, transformational leadership style, individualized consideration, inspirational motivation, intellectual stimulation, idealized influence ,contingent rewards, passive management by exception, active management by exception, employee engagement, mobile telecommunications industry, Ghana

    Effects of stratosphere-troposphere chemistry coupling on tropospheric ozone

    Get PDF
    A new, computationally efficient coupled stratosphere-troposphere chemistry-climate model (S/T-CCM) has been developed based on three well-documented components: a 64-level general circulation model from the UK Met Office Unified Model, the tropospheric chemistry transport model (STOCHEM), and the UMSLIMCAT stratospheric chemistry module. This newly developed S/T-CCM has been evaluated with various observations, and it shows good performance in simulating important chemical species and their interdependence in both the troposphere and stratosphere. The modeled total column ozone agrees well with Total Ozone Mapping Spectrometer observations. Modeled ozone profiles in the upper troposphere and lower stratosphere are significantly improved compared to runs with the stratospheric chemistry and tropospheric chemistry models alone, and they are in good agreement with Michelson Interferometer for Passive Atmospheric Sounding satellite ozone profiles. The observed CO tape recorder is also successfully captured by the new CCM, and ozone-CO correlations are in accordance with Atmospheric Chemistry Experiment observations. However, because of limitations in vertical resolution, intrusion of CO-rich air in the stratosphere from the mesosphere could not be simulated in the current version of S/T-CCM. Additionally, the simulated stratosphere-to-troposphere ozone flux, which controls upper tropospheric OH and O3 concentrations, is found to be more realistic in the new coupled model compared to STOCHEM. © 2010 by the American Geophysical Union

    Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

    Get PDF
    Funding: J.M.C., A.D.L., E.F.L., and E.A.M. were supported by a Stanford Woods Institute for the Environment—Environmental Ventures Program grant (PIs: E.A.M., A.D.L., and E.F.L.). E.A.M. was also supported by a Hellman Faculty Fellowship and a Terman Award. A.D.L., B.A.N., F.M.M., E.N.G.S., M.S.S., A.R.K., R.D., A.A., and H.N.N. were supported by a National Institutes of Health R01 grant (AI102918; PI: A.D.L.). E.A.M., A.M.S.I., and S.J.R. were supported by a National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant (DEB-1518681), and A.M.S.I. and S.J.R. were also supported by an NSF DEB RAPID grant (1641145). E.A.M. was also supported by a National Institute of General Medical Sciences Maximizing Investigators’ Research Award grant (R35GM133439) and an NSF and Fogarty International Center EEID grant (DEB-2011147).Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.Publisher PDFPeer reviewe

    A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior

    Get PDF

    The Skills of Medium-Range Precipitation Forecasts in the Senegal River Basin

    No full text
    Reliable information on medium-range (1–15 day) precipitation forecasts is useful in reservoir operation, among many other applications. Such forecasts are increasingly becoming available from global models. The skills of medium-range precipitation forecasts derived from Global Forecast System (GFS) are assessed in the Senegal River Basin, focusing on the watershed its major hydropower dams: Manantali (located in relatively wet, Southern Sudan climate and mountainous region), Foum Gleita (relatively dry, Sahel climate and low-elevation), and Diama (a large watershed covering almost the entire basin, dominated by Sahel climate). IMERG Final, a satellite product involving rain gauge data for bias correction, is used as reference. GFS has the ability capture the overall spatial and monthly pattern of rainfall in the region. However, GFS tends to overestimate rainfall in the wet parts of the region, and slightly underestimate in the dry part. The skill of daily GFS forecast is low over Manantali (Kling-Gupta Efficiency, KGE of 0.29), but slightly higher over Foum Gleita (KGE of 0.53) and Diama (KGE of 0.59). For 15-day accumulation, GFS forecast shows higher skill over Manantali (KGE of 0.60) and Diama (KGE of 0.79) but does not change much over Foul Gleita (KGE of 0.51) compared to daily rainfall forecasts. IMERG Early, a satellite-only product available at near-real time, has better performance than GFS. This study suggests the need for further improving the accuracy of GFS forecasts, and identifies IMERG Early as a potential source of data that can help in this effort

    The Skills of Medium-Range Precipitation Forecasts in the Senegal River Basin

    No full text
    Reliable information on medium-range (1–15 day) precipitation forecasts is useful in reservoir operation, among many other applications. Such forecasts are increasingly becoming available from global models. The skills of medium-range precipitation forecasts derived from Global Forecast System (GFS) are assessed in the Senegal River Basin, focusing on the watershed its major hydropower dams: Manantali (located in relatively wet, Southern Sudan climate and mountainous region), Foum Gleita (relatively dry, Sahel climate and low-elevation), and Diama (a large watershed covering almost the entire basin, dominated by Sahel climate). IMERG Final, a satellite product involving rain gauge data for bias correction, is used as reference. GFS has the ability capture the overall spatial and monthly pattern of rainfall in the region. However, GFS tends to overestimate rainfall in the wet parts of the region, and slightly underestimate in the dry part. The skill of daily GFS forecast is low over Manantali (Kling-Gupta Efficiency, KGE of 0.29), but slightly higher over Foum Gleita (KGE of 0.53) and Diama (KGE of 0.59). For 15-day accumulation, GFS forecast shows higher skill over Manantali (KGE of 0.60) and Diama (KGE of 0.79) but does not change much over Foul Gleita (KGE of 0.51) compared to daily rainfall forecasts. IMERG Early, a satellite-only product available at near-real time, has better performance than GFS. This study suggests the need for further improving the accuracy of GFS forecasts, and identifies IMERG Early as a potential source of data that can help in this effort

    Impact of recent climate extremes on mosquito-borne disease transmission in Kenya.

    No full text
    Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983-2019 for rainfall, 2000-2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission

    Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    Get PDF
    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths
    corecore