

University of Dundee

A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social **Behavior**

Tolomeo, Serenella; Chiao, Benjamin; Lei, Zhen; Chew, Soo Hong; Ebstein, Richard P.

Published in: Neuroscience and Biobehavioral Reviews

DOI: 10.1016/j.neubiorev.2020.04.013

Publication date: 2020

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

Tolomeo, S., Chiao, B., Lei, Z., Chew, S. H., & Ebstein, R. P. (2020). A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior. Neuroscience and Biobehavioral Reviews, 115, 251-272. https://doi.org/10.1016/j.neubiorev.2020.04.013

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior

Serenella Tolomeo, Benjamin Chiao, Zhen Lei, Soo Hong Chew, Richard P. Ebstein

PII:	S0149-7634(19)31065-6
DOI:	https://doi.org/10.1016/j.neubiorev.2020.04.013
Reference:	NBR 3762
To appear in:	Neuroscience and Biobehavioral Reviews
Received Date:	16 November 2019
Revised Date:	18 March 2020
Accepted Date:	10 April 2020

Please cite this article as: Tolomeo S, Chiao B, Lei Z, Chew SH, Ebstein RP, A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior, *Neuroscience and Biobehavioral Reviews* (2020), doi: https://doi.org/10.1016/j.neubiorev.2020.04.013

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human

Social Behavior

Serenella Tolomeo¹, Benjamin Chiao^{2,3}, Zhen Lei², Soo Hong Chew^{2,*}, Richard P. Ebstein^{2,*}

¹ Department of Psychology, National University of Singapore, Singapore; ² CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China; ³ PSB Paris School of Business, Paris, France.

* Corresponding authors

Dr Serenella Tolomeo Department of Psychology National University of Singapore (NUS) Singapore, Singapore Email: <u>fasst@nus.edu.sg</u> Prof Soo Hong Chew and Prof Richard P. Ebstein China Center for Behavior Economics and Finance Southwestern University of Finance and Economics Chengdu, China Emails: rpebstein@gmail.com; chew.soohong@gmail.com

Highlights

- Oxytocin is an important modulator of human affiliative behaviors.
- This review discusses the social salience hypothesis of oxytocin action.
- Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games.
- The role of oxytocin in parenting and parental attachment.

Abstract

Oxytocin is an important modulator of human affiliative behaviors, including social skills, human pair bonding, and friendship. CD38 will be discussed as an immune marker and then in more detail the mechanisms of CD38 on releasing brain oxytocin. Mention is made of the paralogue of oxytocin, vasopressin, that has often overlapping and complementary functions with oxytocin on social behavior. Curiously, vasopressin does not require CD38 to be released from the brain. This review discusses the social salience hypothesis of oxytocin action, a novel view of how this molecule influences much of human social behaviors often in contradictory ways. The oxytocinergic-vasopressinergic systems are crucial modulators of broad aspects of human personality. Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games. This review also covers the role of oxytocin in parenting and parental attachment. In conclusion, the effects of oxytocin on human behavior depend on the individual's social context and importantly as well, the individual's cultural milieu, viz. East and West.

Acronyms

ACC = Anterior Cingulate

- ADP = Adenosine diphosphate
- AQ = Autism Quotient
- cADPR = Cyclic ADP-ribose
- CNS = Central nervous system
- DA = Dopamine
- eQTLC= Expression Quantitative Trait Loci
- LC-NE = Locus Coeruleus-Norepinephrine
- MRI = Magnetic Resonance Imaging
- OFC = Orbitofrontal cortices
- OXT = Oxytocin
- RAGE = Receptor for advanced glycation end-products
- SARM1 = Sterile Alpha and toll/interleukin-1 receptor motif-containing 1
- TRPM2= Transient Receptor Potential Cation Channel Subfamily M Member 2

AVP = Vasopressin

Keywords: oxytocin, CD38, CD157, human personality, social and affiliative behaviors, pair bonding

1. Introduction

Oxytocin is an important neuromodulator of human affiliative behaviors. Accumulating evidence from animal studies implicates the interaction of oxytocin and serotonin neurons in several aspects of social behaviour (Dölen et al., 2013; Lefevre et al., 2017; Pagani et al., 2015; Yoshida et al., 2009). Additionally, oxytocin-dopamine (DA) interactions have received considerable attention in mediating affiliative behaviors, again in preclinical studies (Charlet and Grinevich, 2017; Shahrokh et al., 2010). In this

<u>review, CD38 as an immune marker and its mechanisms on releasing brain oxytocin are</u> <u>discussed.</u> CD38, a transmembrane glycoprotein widely expressed in vertebrate cells, is a bifunctional ectoenzyme catalysing the synthesis and hydrolysis of cyclic ADPribose (cADPR). cADPR is a universal second messenger that releases calcium from intra- cellular stores. (Bartz and Hollander, 2006). <u>Altogether, interest in the</u> <u>mechanisms of action of oxytocin and CD38 is a major focus of the field of social</u> <u>neuroscience and the number of investigations in the past several years has grown</u> <u>considerably. Table 1 summarizes many of the recent studies in this area.</u>

2. CD38 as an immune marker

The history of CD38 initially focused on its role as an immune cell marker as detailed in a comprehensive review by Malavasi and his collaborators (Malavasi et al., 2008). At first, CD38 appeared to function solely as a marker for the investigation of thymocytes, activated T cells, and certain tissues. Additionally, in contrast with the idea that CD38 functions simply as an activation marker, end-stage differentiated plasma cells and their pathological corresponding cells showed the highest surface density among human cells (Quarona et al., 2013). A startling observation was the conspicuous similarity between human CD38 and the enzyme ADP ribosyl cyclase, initially purified from a mollusk – a phylum that predated the appearance of Homo *sapiens* by 700 million years. CD38 is an ectoenzyme, among many now known, found on the outside of the cell membrane. One important function of CD38 is a nucleotide-metabolizing ectoenzyme involved in the catabolism and recovering of extracellular nucleotides (Morabito et al., 2006). Since cADPR is generated by CD38 at the outer surface of

many cells, albeit it also acts intra-cellularly, and hence increasing attention is paid to addressing this topological paradox. It was demonstrated that CD38 is a catalytically active, unidirectional transmembrane transporter of cADPR, which then reaches its receptor-operated intracellular calcium stores (Zocchi et al., 1999). CD38 undergoes a selective and extensive internalization through non clathrin-coated endocytotic vesicles. A closely related paralogue of CD38 is CD157 apparently derived by duplication of the original CD38 gene (Ferrero et al., 1999). However, the role of CD38 as an immune cell marker and ectoenzyme is not the focus of review. Rather, we concentrate on the perspicacious observation by the Higashida group (Jin et al., 2007) who demonstrated that CD38 is critical for the release of central nervous system (CNS) and brain oxytocin (OXT). Since this initial discovery many review articles on this remarkable discovery have appeared (Deshpande et al., 2005; Feldman et al., 2016; Higashida et al., 2018, 2012; Lopatina et al., 2013; Meyer-Lindenberg et al., 2013).

3. Mechanism of CD38 action on release of OXT (Chini and De Toledo, 2002) Cyclic ADP-ribose (cADPR) was discovered in 1987 (Clapper et al., 1987). Successive studies showed that the Ca²⁺release activity of NAD⁺ was in fact due to conversion of NAD⁺ to an active metabolite, later shown to be a cyclic compound derived from the ADP-ribose moiety of NAD⁺ - cyclic ADPR (Lee et al., 1989). cADPR mobilizes Ca²⁺ by activation or sensitization of the so-called ryanodine receptor/channel (RyR) (Galione et al., 1991). Activation of CD38 by GTP-binding protein (G protein) and various types of receptors triggers formation of cADPR. cADPR opens Ca²⁺ release channels of ryanodine receptor type II or III (RyR) with another cofactor, Ca². Mobilization of

Ca²⁺ from microsomes of Ca²⁺ pools increases [Ca²⁺], resulting in OXT release In mammals ADP-ribosyl cyclase (CD38) is capable of generating both NAADP and cADPR (Aarhus et al., 1995). The unique Ca²⁺⁻ releasing properties of NAADP suggests it is a candidate for an intracellular messenger. CD38 release of OXT is mediated by ryanodine receptor/channel and Ca²⁺⁻ release of oxytocin in the brain. For example, increases in the intracellular free Ca²⁺ concentration in oxytocinergic hypothalamic cells are induced by cyclic ADP-ribose (cADPR), ADPR, and β -NAD+ sensitive to CD38 (Higashida et al., 2018). CD38 and Transient Receptor Potential Cation Channel Subfamily M Member 2 (TRPM2) are involved in triggering OXT release under physical (fever or heat) and chemical (NAD or cADPR) stimuli in both in vitro and in vivo conditions (Higashida et al., 2018).The scheme of how CD38 releases OXT is shown in the figure below (Fig.1) (Higashida, 2016).

4. Oxytocin and vasopressin

The mammalian oxytocin (OXT) and vasopressin (AVP) nonapeptides, named for their nine–amino acid structure, vary from each other at only two amino acid positions (Fig. 2). OXT and AVP are speculated to have emerged from a gene-duplication occurrence before vertebrate separation. Both nonapeptides vary by a single amino acid difference, and their genes are near each other on the same chromosome. Invertebrates mostly have only one oxytocin/vasopressin homolog, while vertebrates are characterized by two homologs (Acher et al., 1995).

In mammals, OXT and VAS are synthesized mainly in the hypothalamus and then ferried to the pituitary for either release into the peripheral target organs or alternatively

released to the amygdala and other brain regions. Both OXT (OXTR) and AVP (AVPR1a and b) receptors show manifest variation in their brain expression profiles. OXT has one receptor, whereas AVP acts in the brain on its two centrally expressed receptor subtypes, V1a and V1b. AVPR1a functions more importantly in vasopressinergic modulation of social behavior and hence has been the focus of most research (Lim and Young, 2006). A review by Gimpl and Farenholz reported an excellent explanation of the oxytocin receptor system (Gimpl and Fahrenholz, 2001). The encoded OXTR receptor is a 389- amino acid polypeptide with 7 transmembrane domains and belongs to the class I G protein-coupled receptor (GPCR) (Gimpl and Fahrenholz, 2001). The gene is present in single copy in the human genome and was mapped to the gene locus 3p25–3p26.2. The gene spans 17 kb and contains 3 introns and 4 exons. Exons 1 and 2 correspond to the 5'-prime noncoding region (Zingg and Laporte, 2003). Exons 3 and 4 encode the amino acids of the OXTR. Intron 3, which is the largest at 12 kb, separates the coding region immediately after the putative transmembrane domain 6. Exon 4 contains the sequence encoding the seventh transmembrane domain, the COOH terminus, and the entire 3^[]-noncoding region, including the polyadenylation signals (Fig. 3).

5. The role of CD38 and OXT in human behavior

5.1. Social Salience hypothesis of OXT action on human social behavior (Shamay-Tsoory and Abu-Akel, 2016)

Tsoory and Abu-Akel (Shamay-Tsoory and Abu-Akel, 2016), *following seminal work by* Bartz and Hollander (Bartz and Hollander, 2006), have suggested a novel theory of

OXT role in human social behavior that attempts to resolve some of the contradictory findings regarding this paramount human social hormone associated with prosocial and affiliative behaviour.

They argue that the effects of OXT on social behavior is primarily due to its tempering the salience of social cues in a situational-conditional way. Whereas OXT enhances trust, love and empathy to ingroup but not to outgroup members (De Dreu et al., 2010; Sheng et al., 2013), OXT may also evoke defensive systems of aggression with respect to outgroup members (De Dreu et al., 2010) as well as loved ones or close companions (DeWall et al., 2014), suggesting that OXT encourages aggressive leanings toward the "other" contingent on the type of the relationship between them. Such observations are compatible with investigations from animal research pointing to a role of OXT having an influence extending further than simple approach behavior. Interestingly, OXT (the socalled 'love hormone') also modulates selective aggression against male intruders in pair-bonded prairie voles (Young et al., 2008) and maternal aggression in postpartum and lactating rats (Leng et al., 2008). Recently, a converging consensus has shown that intranasal oxytocin administration (INA) increases in-group preference and cooperation. Whilst there is some evidence for oxytocin increasing context-dependent aggression, such as protection to mates or offspring, more work is warranted to unambiguously demonstrate convincing support for the role of oxytocin in mediating increased aggression in humans (de Jong and Neumann, 2017). Moreover, accumulating evidence suggests that that the effects of INA oxytocin are negatively associated with aggression in animals and humans (de Jong and Neumann, 2017). A recent paper in humans showed a lessening in reactive aggression as revealed by

examining rejection rates in the UG (Zhu et al., 2019). It should be noted, however, that the association between vasopressin and aggression in males is well established in both animal and humans studies (Berends et al., 2019; de Jong and Neumann, 2017). Shamay-Tsoory and Abu-Akel (Shamay-Tsoory and Abu-Akel, 2016) also suggest the notion that dopaminergic systems due to their role in attention are important in mediating the role of OXT and saliency in directing attention to the context in which OXT exerts its role in social behavior.

In contrast to the special function attributed to dopamine, through its interaction with Locus Coeruleus-Norepinephrine (LC-NE) system, OXT might play the key role in mediating the effects in attention orientin and hence social salience (Aston-Jones and Cohen, 2005).

There are many similarities between the LC-NE and DA systems. NE and DA are neuromodulatory neurotransmitters that have similar functional properties on their site of action systems (e.g., modulation of gain (Servan-Schreiber et al., 1990)); both are reactive to motivationally salient events (e.g., reward predictors); and dysfunctions of both have been caught up in overlapping groups of clinical disorders including schizophrenia, depression, and attention deficit disorder (Gradin et al., 2011; Kumar et al., 2008). Despite these similarities, the relationships between these systems and how they interact has remained unclear, in part due to the lack of formal theories about the function of either system. Montague et al. (1996) have proposed a sophisticated theory of DA function that suggests that it implements the learning signal associated with a reinforcement learning mechanism (Schultz et al., 1997). This theory affords a direct point of contact with the adaptive gain theory of LC-NE function. We argue that in many

respects the LC-NE system is complementary, if not an alternative, to the DA learning reinforcement system and that distinguishing between their actions on learning, attention and motivational behavior is a future challenge.

Oxytocinergic neurons that originate in the paraventricular nucleus (PVN) project to many important areas which integrate behavioral and cardiovascular reactions within the CNS. One of these areas is the major noradrenergic LC nucleus (Buijs, 1983). A large body of behavioral and electrophysiological studies suggests that the activity of the noradrenergic system emanating in the LC is correlated to alertness and attentiveness (Aston-Jones et al., 2007; Petersson et al., 1998). Thus, noradrenergic LC neurons regulate states of alertness and enhances the ability of the brain to react adaptively to environmental stimuli (Rajkowski et al., 1997). The results of the study by (Petersson et al., 1998), showing an increased responsiveness of LC alpha 2adrenoreceptors following sub-chronic oxytocin treatment, indicate that LC-NE are likely involved in some of the important behavioral effects of OXT. There appears to be the need to consider the possibility of OXT acting as a moderator of social salience valence, as suggested by the novel theory by Shamay-Tsoory (Shamay-Tsoory and Abu-Akel, 2016), that it is mediated at least as much by the actions of this nonapeptide on the LC-NE system as its effect on the limbic dopaminergic systems.

5.2. Oxytocinergic-Vasopressinergic Systems and Personality

The oxytocin (OXT) system is one biological substrate that has been associated with individual differences in human behavior, social cognition and broad definitions of personality such as trust and generosity. There are studies showing that greater

concentrations of endogenous OXT is associated with higher trait novelty-seeking temperament (De Dreu et al., 2015) and secondly, OXT intra-nasal administration leads to increased holistic processing, more flexible thinking, more original ideas, and better creative problem solving (De Dreu et al., 2014). Intriguingly, Cardoso and colleagues (Cardoso et al., 2012) demonstrated that OXT administration is characterized by modifications in self-report personality. After intra-nasal OXT, subjects self-report higher Extraversion and Openness to Experience personality traits. These findings have driven the search for genes within the OXT system that confer individual differences in personality traits and social cognition.

In a recent study, Hass and his co-authors (Haas et al., 2018) explored the correlation between Big-5 personality traits (Costa and McCrae, 2008) and epigenetic modification of *OXTR*. They predicted that DNA methylation at the promoter region of the OXTR gene would be associated with individual differences in Openness to Experience. Furthermore, there currently exists a mixed pattern of results linking the OXTR gene with sociability (Bakermans-Kranenburg and Van Ijzendoorn, 2014). Hence, they explored the association between epigenetic modification of OXTR and prosocial personality traits, Extraversion and Agreeableness. To test their hypotheses, they conducted a multiple regression analysis with all Big-5 personality traits entered simultaneously as predictor variables and OXTR DNA methylation entered as the criterion variable (controlling for age and sex). The results indicate that Openness to Experience is associated with *OXTR* DNA methylation, while controlling for the remaining Big-5 personality dimensions (Neuroticism, Extraversion, Agreeableness, and Conscientiousness) and sex and age. This finding provides additional support for

models associating oxytocin with individual differences in personality and identity in humans.

5.3. Gratitude, Trust and trustworthiness

In an interesting paper (Algoe et al., 2014) implemented a genetic strategy to examine the hypothesis that social interactions involving expressed gratitude would likely be associated with SNP variations in CD38, which is crucial to brain release of OXT. The CD38 SNP (rs6449182), which is known to modulate CD38 expression, was significantly associated in laboratory and field experiments with global relationship satisfaction, perceived partner responsiveness and positive emotions (especially love), observed behavioral expression of gratitude toward a romantic partner in the lab, and frequency of expressed gratitude in daily life.

Trust in other people is a prerequisite of social affiliation and social bonding in humans. As an introduction to concept of trust and its importance in human relationships, we suggest the article by Van Lange (Van Lange, 2015) who fixes four basic lessons on trust: (a) Generalized trust is more a matter of culture than genetics; (b) trust is deeply rooted in social interaction experiences (going beyond childhood), networks, and media; (c) people have too little trust in other people in general; and (d) it is adaptive to regulate a "healthy dose" of generalized trust. Each of these lessons is inspired and illustrated by recent research from different scientific disciplines discussed in the article.

In Figure 4, the amount Y sent by Player 1 is referred to as Trust and the amount sent back by Player 2 out of 3Y is referred to as Trustworthiness. Kosfeld et al (Kosfeld et al., 2005) administered intranasal OXT to subjects and reported an increase in Trust in the

incentivized Trust Game, albeit no increase in Trustworthiness was observed. This seminal article has spawned a series of follow-up experiments in people using intranasal OXT as well as plasma OXT measurements to evaluate the role of this nonapeptide on social preference. In a subsequent study, Baumgartner and colleagues examined the effect of OXT on the neural circuitry underlying trusting behavior using fMRI (Baumgartner et al., 2008) and a modified trust game. The participants' initial trusting behavior was not reciprocated and intranasal OXT increases the tolerance to this lack of reciprocity compared with placebo. This difference in trust adaptation was associated with the attenuated activity of amygdala and midbrain regions (Baumgartner et al., 2008).

However, there is a caveat in the results first reported by Kosfeld and colleagues (Kosfeld et al., 2005). A more recent meta study by Nave et al (Nave et al., 2015) suggests that the association between intranasal OXT with higher trust has overall not been reproducible. Moreover, the measurements of plasma OXT in the Trust Game is plagued by controversy with both the reliability of measurement of plasma OXT (McCullough et al., 2013) and its relationship to brain levels of the hormone. In addition, genetic associations between the OXTR polymorphisms and Trust should be viewed in light of the small effect sizes of single polymorphisms and the difficulty in replicating such findings.

In summary, Nave et al (Nave et al., 2015) argue that the collective evidence does not generate robust convergent evidence that Trust is reliably associated or correlated with OXT. However, they do conclude their article with constructive ideas for improving the robustness and rigor of OXT research. Despite the critique of Nave et al, the association

between OXT and Trust continues to attract much attention, and continuing investigation in various fields, and hence despite the caveat, further research to better understood this important human personality trait seems warranted.

Indeed, there is considerable interest in the role of oxytocin in promoting interpersonal trust. However, as shown in a recent review and metanalysis by Nave and his colleagues (Nave et al., 2015) the role of oxytocin in promoting trust is apparently weak. Nave et al note that "Unfortunately, the simplest promising finding associating intranasal OT with higher trust has not replicated well. Moreover, the plasma OT evidence is flawed by how OT is measured in peripheral bodily fluids. Finally, in recent large-sample studies, researchers failed to find consistent associations of specific OT-related genetic polymorphisms and trust", Rather than an effect on trust, a recent paper suggests the intriguing notion that oxytocin is increasing conformity, specifically to the opinions or advice of the most trusted individuals and/or experts (Xu et al., 2019).

In an interesting article, Nishina and colleagues (Nishina et al., 2018) may have shed some light on possible reasons for the lack of robust evidence for a role of OXTR in Trust-related behaviors. Previous studies have shown that genetic variations in rs53576, a common variant of *OXTR*, are correlated with Trust in men (Nishina et al., 2015). Since the path from polymorphism to behavior is circuitous and difficult to unravel, Nishina and colleagues further examined whether amygdala volume mediates the association between *OXTR* rs53576 genotypes and attitudinal trust. Previously, Inoue and colleagues showed a correlation between the *OXTR* gene and amygdala volume in non-clinical subjects (Inoue et al., 2010). The rs2254298A allele of *OXTR* was

significantly correlated with larger bilateral amygdala volume and the A allele effect on amygdala volume was dose dependent. Two single nucleotide polymorphism haplotypes, including rs2254298G allele, showed significant associations with a decrease in bilateral amygdala volume.

Furthermore, Nishina and colleagues (Nishina et al., 2018) found evidence that left amygdala volume plays a pivotal role in the association between *OXTR* rs53576 genotypes and attitudinal trust in men. Unfortunately, it is difficult to establish convincing evidence for correlations between polymorphism x brain region x gender x behavioral trust as many unknown variables are contributing to these relationships.

Another interesting study from the Nishina and colleagues showed a relationship between *AVPR1a* (a paralogue of OXTR) and Trust (Nishina et al., 2019). Four-hundred and thirty-three participants played the Trust Game, answered the attitudinal trust question, and their buccal cells were collected. Results showed that men with a short form of *AVPR1* at end to send more money to the opponent, even if there is a possibility of being betrayed by the opponent. Additionally, people with a short form of *AVPR1a* tended to return money to the opponent who trusts them. However, attitudinal trust was not associated with AVPR1a. These results indicate that arginine-vasopressin receptor 1a plays an important role in trust and reciprocal behaviors. Curiously, in a highly-cited study from our own group (Knafo et al., 2008) we showed that the long form of the *AVPR1a* RS3 allele is the prosocial allele and contributes to increased giving in the Dictator Game.

Another confound in establishing gene-behavioral correlations concerns individual emotional differences. For example, individuals high in social anxiety showed reduced

reciprocal, but intact trustful giving, pointing to a constraint in responsiveness (Anderl et al., 2018).

Another example of the complexity of Trust and genes is the recent study by Fang and co-authors (Fang et al., 2020). They note that long-term experience under stressful work environments can modulate an individual's general trust; not surprisingly, high job stress is associated with low trust in others perhaps suggesting a loss of executive control under such stressful conditions. It is difficult in simple gene association studies to consider many of the important demographic and environmental variables that are now known to temper many correlations between genes and behavior. Both environmental and genetic factors contribute to general trust (Cesarini et al., 2008); however, few empirical studies have explored the important role of geneenvironment interactions on general trust. In this study (Fang et al., 2020), the moderating roles of the polymorphisms OXTR rs53576 and OXTR rs2268490, job stress and general trust were evaluated in 362 Chinese Han university teachers (196 males, 165 females, and 1 undisclosed). Standardized questionnaires about demographic characteristics, job stress, and general trust scale were collected. Blood samples were collected for OXTR rs53576 and rs2268490 genotyping. The results showed that job stress scores showed a significant negative main effect on general trust (p < 0.001), while OXTR rs53576 and rs2268490 did not (p > 0.05). Nevertheless, there was a significant interaction between job stress and OXTR rs53576 or rs2268490 on general trust, controlling for gender and age. High job stress was correlated with low general trust in OXTR rs53576 homozygous individuals (GG/AA) or OXTR rs2268490 CT individuals, demonstrating that the GA genotype in OXTR rs53576 and CC/TT

genotype in *OXTR* rs2268490, which the authors suggest are therefore protective genotype of general trust.

Although there is an ever-increasing number of studies of OXT and human social behavior, due caution needs to be exercised in evaluating the role of this nonapeptide in shaping human behavior. In a recent review Zhao and colleagues have made some interesting points worth considering when evaluating the role of OXT in behavior (W. Zhao et al., 2019) and also see (Quintana and Woolley, 2016) as well as reply of Leng and Ludwig (Leng and Ludwig, 2016). Walum and colleagues have underscored the conundrum of low statistical power in many of the human studies (Walum et al., 2016) and Bartz and co-authors have emphasized the importance of 'context' when carrying out experiments with OXT (Bartz et al., 2011). Notably, replicability of findings of sniffing OXT have been questioned especially in connection with Trust (Nave et al., 2015) and see (Yao et al., 2014).

Yao et al (Yao et al., 2014) showed in a double-blind, between-subjects, placebocontrolled design study, two repair strategies (for restoring trust) were used to examine the effect of intra-nasal OXT administration on modulating trust restoration in a revised trust game. The results showed that although OXT had no overall effect on modulating trust restoration, it did have a significant gender specific effect. Female subjects showed less evidence for trust repair in the OXT compared with the placebo treatment group. This suggests that OXT may make female subjects exhibit more punitive behavior towards partners who violate their trust and less sensitive to repair strategies provided by them. Interestingly, this gender specific effect was more evident in the context of attempted trust repair using financial compensation. However, it also extended to

apology alone, and no compensation conditions, but not to the fair one, in females exhibiting high trait forgiveness. Thus, females with a more forgiving attitude towards betrayal may actually be more likely to punish betrayal following oxytocin treatment. With respect to personal factors, converging evidence points to the important role of biological factors including sex (Feng et al., 2015a; Gao et al., 2016; Zhang et al., 2017; *Borland et al., 2019a, 2019b; Love et al., 2012; Luo et al., 2017*) and genetic variations, particularly individual differences in oxytocin-receptor gene (OXTR; located on chromosome 3p25) polymorphisms (Avinun and Knafo, 2013; Jones et al., 2017a; Kurian et al., 2011; Weisman et al., 2012; Wirth et al., 2015; Yang et al., 2010) among many.

Interestingly, some pharmaco-genetic studies examined how individual differences in *OXTR* genetics can impact the use of intra-nasal OXT. Modulatory effects have been reported in the domains of facial emotion recognition (Marsh et al., 2012), social salience (Feng et al., 2015b; Jones et al., 2017b), and cooperation (Feng et al., 2015) suggesting that individual differences in OXTR genetics may account for the variable effects of intranasal OXT on interpersonal behavior.

5.4. Parenting: the role of OXT

5.4.1. Parental Attachment.

There are many studies showing greater influence of SNP variation of OXT-pathway genes with more caring parental behavior. Mothers characterized for the *OXTR* rs53576GG SNP were observed in more sensitive connections and communication with their babies (Bakermans-Kranenburg and van Ljzendoorn, 2008). Two neurophysin-I (OXT) polymorphisms, rs2740210 and rs4813627, were correlated with baby-talk

vocalizations during mother-infant play (Mileva-Seitz et al., 2013) and polymorphism by early caregiving consequences arose for maternal instrumental care. An investigation of 323 parents, and nonparents showed that vulnerability alleles of the OXTR (rs2254298, rs1042778) and CD38 (rs3796863) loci were associated with decreased parental touch and the interaction of increased plasma OXT and low-vulnerability CD38 SNPS were associated with longer times of parent-baby gaze synchrony. Parents who described higher quality caregiving in childhood had higher plasma OXT, low-risk CD38 alleles, and were characterized by more touch toward their own infants (Feldman et al., 2012). In a longitudinal study of parents and their firstborn infants across the first three years of life, parents' behavioral synchrony at 1 and 6 months and mothers' CD38 SNP were associated with children's social reciprocity during playings with their dearest friend at 3 years, indicating that the transfer from parent-infant attachment to attachment with close friends is supported by OXT- pathway loci enabled by parenting behavior (Uzefovsky et al., 2012). Persistence in attachment security from one year to 26 years was moderated by OXTR rs53576; solely among GG homozygous individuals was infant attachment security related to attachment to the agent's romantic partner in adulthood (Lee Raby et al., 2013).

OXTR has also been investigated in connection with parents' brain patterns. Two *OXTR* SNPs (rs1042778, rs53576) were associated with brain responses to child stimuli in the orbitofrontal cortex, anterior cingulate cortex, and hippocampus; the rs53576A allele correlated with positive parenting and with activations in these areas (Michalska et al., 2014). Similarly, only *OXTR* rs53576GG homozygotes preferred infant faces after OXT administration (Marsh et al., 2012) and displayed greater reactivity to cry sounds,

except among those reporting high depressive symptoms (Riem et al., 2011). Finally, assessing mothers' and nonmothers' event-related potential response to infant and adult faces of strong and mild intensity, mothers with OXTR rs53576GG genotype showed early-latency differential frontal response to intense facial expression, particularly infants' faces, suggesting that differential brain responses to infants' and adults' emotional cues are mediated by OXTR (Peltola et al., 2014). In a family-based study, OXTR rs53576AA homozygous mothers were less warm toward their children (Klahr et al., 2015). African-American adults with the OXTR rs53576G genotype coupled with more constructive childhood memories reported greater positive affect and resilient coping (Bradley et al., 2013). The OXTR rs2254298 A allele was associated with infant attachment security but only in non-Caucasian infants (Chen et al., 2011). Maltreated OXTR rs53576GG homozygous adolescents reported more internalizing symptoms, with no allelic effect on nonmaltreated children, suggesting that OXTR rs53576GG homozygotes may be more attuned to negative rearing experiences. These findings indicate that OXTR effects are partly mediated by early environment and the more efficient genotype may open children to greater susceptibility to contextual influences

5.5. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship The reason that some people look for social contacts while others avoid such contact has important implications for wellness. Some investigations indicate that oxytocin (OXT), the most prominent of human social hormones, and CD38 that enables OXT release, add to individual variation in social skills from high levels of social involvement to virtually total avoidance that distinguish autism spectrum disorder. To characterize

the neurochemical mechanisms of sociality, CD38 expression of blood leukocytes (PBL) was examined by us in Han Chinese university students (Chong et al., 2017). First, CD38 mRNA levels were shown to be associated with lower Autism Quotient (AQ) scores, showing greater social skills. AQ measures autistic traits including the inclination and deftness required for successful social interactions with others. Second, three CD157 eQTL SNPs in the CD38/CD157 gene were correlated with CD38 transcription. CD157 is a paralogue of CD38 and is next to it on chromosome 4p15. Third, correlation was also seen between the three CD157 eQTL SNPs adjusting CD38 expression and AQ. Fourth, combining plasma OXT and CD157 eQTLs further demonstrated the association. In the entire model, CD38 expression, CD157 eQTL SNPs and circulating OXT totally explain a notable 14% of the variance in sociality. Fifth, the ecological validity of this study was shown by the finding that people with greater PBL CD38 expression have more friends, in particular for men. Additionally, CD157 sequence differences are correlated with scores on the Friendship questionnaire. Altogether, this investigation by singularly leveraging a number of measures uncovers important elements in the oxytocinergic pathway supporting non kin sociality, friendship and uncovers a likely pathway explaining the transition from nonclinical behavior to psychopathology.

Our study (Chong et al., 2017) indicates that lymphocyte CD38 transcription is correlated with AQ scores in 214 normal Singaporean Han Chinese university students, significantly advancing our previous observation in transformed B cells cells lines taken from Israeli ASD subjects (Lerer et al., 2010; Riebold et al., 2011). In the present investigation, CD38 expression enabled to recognized eQTLs across the entire the

CD38/CD157 loci and especially CD157 eQTL SNPs independently correlation with AQ scores in a group of 1327 university students. Additional proof of the functionality of CD157 polymorphic SNPs, and its function in the oxytocinergic gene pathway, is demonstrated a by a significant eQTL SNP correlation with plasma oxytocin measurements in 1065 university students. CD38 expression, CD157 eQTL SNPs and plasma, OXT measurements that account for a vigorous 14% of the variance in social skills overall in the group we studied. Notably, our all-encompassing model (expression, eQTL DNA variation and circulating hormone measures) is a significant improvement over present behavioral genetic gene correlation studies where recognized polymorphisms make up for only ~1% of the variation, and generally, of the variance. It is important that ecological validity for these observations is shown by the significant correlation seen between self-reported number of friends, the expected outcome of honed social skills, and the main independent variables in our regression model. Notably, PBL CD38 expression is correlated with the subject's self-reported number of friends. Men with elevated CD38 expression have significantly greater number of friends. This sex effect reflects experiments in vole and mice models of sociality (Lukas and de Jong, 2015). Also, CD157 sequence variance is correlated with embarks on the Friendship Questionnaire. Overall, from myriad points of view, viz. DNA eQTL SNP sequence variation, gene expression, psychological pencil and paper tests, biomarkers (SNPs and peripheral OXT) and real-life social relationships the current investigation endorses the ever growing standing of oxytocinergic pathways in molding social and communication skills in non-clinical behavior as well as mental illness.

Our study (Chong et al., 2017) uses a blood genomics approach to complement genetic association studies adds to a growing series of investigations that leverage gene expression in lymphocytes to probe the functional genome and reap information beyond simple sequence variations, see (Kurian et al., 2011; Niculescu et al., 2015) among many. There appear to be several views of how best to interpret and use findings related to differences in gene expression in peripheral blood that are correlated with behavioral phenotypes. One view is that lymphocyte gene expression to some extent reflects parallel expression in brain and hence blood expression in part indexes brain expression (Sullivan et al., 2006). An alternative and complementary view suggests that immune involvement contributes to risk for psychopathology and gene expression in lymphocytes is hence not a mere biomarker indexing brain expression, but contributory to etiology. Finally, our study (Chong et al., 2017) shows that ADP ribosyl-cyclases (CD38/CD157), which are obligatory mediators of brain oxytocin release, are at the hub of a complex molecular pathway, which likely includes purinergic and immune signaling pathways that altogether partially determine the skills required to make and preserve friendships. Future studies focused on immune markers such as CD38/CD157 that have been co-opted to serve functions in the brain would appear to be a fruitful path forward towards a more comprehensive understanding of the full range of human sociality.

5.6. Love and Marriage (Pair Bonding)(Norman et al., 2010; Young and Wang, 2004)

The most head-line catching characteristic of the oxytocin nonapeptide is its association with 'love', pair-bonding and affiliative behaviors (Bachner-Melman and Ebstein, 2014).

Feldman and her associates showed the importance of OXT during the initial stages of romantic attachment (Schneiderman et al., 2012). examined plasma OXT in 163 young adults: 120 new lovers (60 couples) three months after the initiation of their romantic relationship and 43 non-attached singles. Twenty-five

of the 36 couples who stayed together were seen again six months later. Couples were observed in dyadic interactions and were each interviewed regarding relationshiprelated thoughts and behaviors. OXT plasma levels were significantly higher in new lovers compared to singles. These high levels of OXT among new lovers did not decrease six months later and showed high individual stability. OXT correlated with the couples' interactive reciprocity, including social focus, positive affect, affectionate touch, and synchronized dyadic states, and with anxieties and worries regarding the partner and the relationship, findings which parallel those described for parent-infant bonding. OXT levels at the first assessment differentiated couples who stayed together six months later from those who separated during this period. Regression analysis showed that OXT was correlated with interactive reciprocity independent of sex, relationship duration, and the partner's OXT. Findings suggest that OXT may play an important role at the first stages of romantic attachment and lend support to evolutionary models suggesting that parental and romantic attachment share underlying bio-behavioral mechanisms.

In 2013, a study published by Steele and colleagues reported the results of a discovery and a replication study, each involving a double-blind, placebo-controlled, withinsubject, pharmaco-functional Magnetic Resonance Imaging (MRI) experiment with 20 heterosexual pair-bonded male volunteers (Scheele et al., 2013). In both experiments,

intranasal OXT treatment (24 IU) made subjects perceive their female partner's face as more attractive compared with unfamiliar women but had no effect on the attractiveness of other familiar women. This enhanced positive partner bias was paralleled by an increased response to partner stimuli compared with unfamiliar women in brain reward regions including the ventral tegmental area and the nucleus accumbens (NAcc). In the left NAcc, OXT even augmented the neural response to the partner compared with a familiar woman, indicating that this finding is partner-bond specific rather than due to familiarity. Taken together, these results suggest that OXT could contribute to romantic bonds by enhancing their partner's attractiveness and reward value compared with other women.

In 2014, researchers published findings in the journal *Emotion* (Cardoso et al., 2014) suggesting accurate identification of emotion in faces, based on agreement with a normative sample, was impaired in the intranasal OXT group relative to placebo. No such effect was observed for tests using nonsocial stimuli. In line with the social salience hypothesis concerning the effect of intranasal oxytocin on social cognition (Averbeck, 2010; Bartz et al., 2011; Shamay-Tsoory and Abu-Akel, 2016) the authors predicted that intranasal oxytocin would enhance the perception of emotion in faces, but not the perception of emotion in nonsocial stimuli. Consistent with their prediction, intranasal oxytocin increased ratings of intensity of all emotions perceived in faces. Consequently, this effect decreased the accurate identification of emotions in faces on the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), where the identification accuracy of an emotion is based on agreement with a normative sample.

As expected, no effect of intranasal oxytocin on ratings of emotion in nonsocial stimuli (designs and natural scenes) or on a task of abstract verbal reasoning about emotion. In an interesting study (Bartels and Zeki, 2004) the authors employed functional imaging (fMRI) to examine brain activity in mothers viewing pictures of their own and of acquainted children, and of their best friend and of acquainted adults as additional controls. The activity specific to maternal attachment was compared to that associated to romantic love described in an earlier study of these authors and to the distribution of attachment-mediating neurohormones established by other studies. Both maternal and romantic 'love' or attachment activated regions specific to each, as well as overlapping regions in the brain's reward system that coincide with areas rich in oxytocin and vasopressin receptors. Both deactivated a common set of regions associated with negative emotions, social judgment and 'mentalizing', that is, the assessment of other people's intentions and emotions. The authors interpreted these findings to mean that human love and attachment implements a push-pull mechanism that minimizes social distance by minimizing networks used for critical social assessment and negative emotions, while individuals form attachments mediated by the reward circuitry, offering insights into the power of love to motivate and exhilarate.

The reader is referred to an excellent review by (de Boer et al., 2012) that thoroughly covers the biological perspective on human romantic love.

6. Oxytocin and Gut Microbiota

In rodents, OXT mediates antidepressant-like effects and low OXT levels positively correlate with depressive and stress-like phenotype and changes in the gut bacterial

(Matsunaga et al., 2009; Norman et al., 2010). Interestingly, there is a strong interaction between stress and the gut microbiota composition. Reversible effects were observed by feeding mice with *L.reuteri* which were dependent on vagal signaling that blunted *Lactobacillus* plasma and hypothalamic OXT(Buffington et al., 2016). A recent review by Lach and colleagues covered the main reported studies on the association of anxiety, depression and the microbiome (Lach et al., 2018). In humans, people with autism reported digestive problems and this might be related to OXT (Tomova et al., 2015). Mounting evidence indicates that genetic and epigenetic variations in the OXTR gene are related to autism spectrum disorders (Jacob et al., 2007). Future research in this field might provide novel understanding at both mechanistic and therapeutic level that might aid in the treatment of mood disorder and autism as well as *further genetic research is needed to evaluate the relationship between OXT and CD38 and autism spectrum disorders*.

7. Oxytocin in the context of independent and interdependent cultures

Transcultural and imaging genomic studies provide a great deal of evidence that neural correlates of multiple cognitive and affective processes are shaped by both cultural milieu and genetic background (Han and Ma, 2015; Kitayama et al., 2016, 2014; Kitayama and Uskul, 2011; Luo et al., 2015; Sasaki, 2013).

Luo and his colleagues (Luo et al., 2015) investigated whether and how *OXTR* rs53576 interacts with interdependence - a key dimension of cultural orientations that distinguish between East Asian and Western cultures - to affect human empathy that underlies altruistic motivation and prosocial behavior. Experiment 1 measured interdependence,

empathy trait and *OXTR* rs53576 genotypes of 1536 Chinese participants. Hierarchical regression analyses revealed a stronger association between interdependence and empathy trait in G allele carriers compared with A/A homozygotes of *OXTR* rs53576. Experiment 2 measured neural responses to others suffering by scanning A/A and G/G homozygous of OXTR rs53576 using functional magnetic resonance imaging. Hierarchical regression analyses revealed stronger associations between interdependence and empathic neural responses in the insula, amygdala and superior temporal gyrus in G/G compared with A/A carriers. Their results provided the first evidence for gene x culture interactions on empathy at both behavioral tendency and underlying brain activity.

8. Conclusions

OXT and CD38 are emerging as paramount human social hormones contributing significantly to human affiliative behaviors, including social skills, human pair bonding, and friendship. Evidence from many sources, including imaging studies, electrophysiology, genetics, pharmacogenetics and plasma measures of OXT, all support the importance of these two molecules in a wide range of human social behaviors. Our review discusses the novel social salience hypothesis of oxytocin action, which is an interesting view of how this molecule influences human social behavior. In addition, this review covers the important role of oxytocin in trust related behavior, parenting and parental attachment. Affiliative behaviors leading to love are complicated and well-illustrated by the song "Love and Hate" by Michael Kiwanuka found on YouTube https://www.youtube.com/watch?v=aMZ4QL0orw0.

Three interesting publications have recently provided novel potential avenues for future research on CD38 and oxytocin. Yamamoto and Higashida demonstrated in a recent Communications Biology article that the receptor for advanced glycation end-products (RAGE) is oxytocin's binding protein and enables its transport to the brain (Yamamoto et al., 2019). In addition, Zhao and colleagues demonstrated that SARM1 catalysis was similar to CD38, despite having no sequence similarity. Both catalyzed similar set of reactions, but SARM1 had much higher NAD-cyclizing activity, making it more efficient in elevating cADPR. (Zhao et al., 2019). Lastly, as highlighted by Liu and colleagues, SARM1 causes cortical and axonal neurodegeneration, however, whether NAD+ loss and the associated defects in energy metabolism are the primary effectors of axonal degeneration is controversial. In addition, how nicotinamide mononucleotide (NMN) relates mechanistically to axon degeneration, and presumably SARM1 activation, remains unresolved (Liu et al., 2018). In conclusion, investigations of OXT and CD38 are constrained by the complexity of the affiliative behavioral phenotype and the many confounds that contribute to interpreting experiments that are context dependent. The current review presents what we expect is a balanced view of the state of knowledge of OXT on human sociality.

References

- A. Bartz, J., Hollander, E., 2006. The neuroscience of affiliation: Forging links between basic and clinical research on neuropeptides and social behavior. Horm. Behav. 50, 518–528. https://doi.org/10.1016/j.yhbeh.2006.06.018
- Aarhus, R., Graeff, R.M., Dickey, D.M., Walseth, T.F., Lee, H.C., 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. https://doi.org/10.1074/jbc.270.51.30327
- Acher, R., Chauvet, J., Chauvet, M.T., 1995. Man and the chimaera. Selective versus neutral oxytocin evolution. Adv. Exp. Med. Biol. 395, 615–627.
- Anderl, C., Steil, R., Hahn, T., Hitzeroth, P., Reif, A., Windmann, S., 2018. Reduced reciprocal giving in social anxiety Evidence from the Trust Game. J. Behav. Ther.
 Exp. Psychiatry 59, 12–18. https://doi.org/10.1016/j.jbtep.2017.10.005
- Aston-Jones, G., Cohen, J.D., 2005. An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
- Aston-Jones, G., Iba, M., Clayton, E., Rajkowski, J., Cohen, J., 2007. The locus coeruleus and regulation of behavioral flexibility and attention: Clinical implications, in: Brain Norepinephrine: Neurobiology and Therapeutics. pp. 196–235.
 https://doi.org/10.1017/CBO9780511544156.008
- Averbeck, B.B., 2010. Oxytocin and the salience of social cues. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1004892107

- Avinun, R., Knafo, A., 2013. The Longitudinal Israeli Study of Twins (LIST)-an integrative view of social development. Twin Res. Hum. Genet. 16, 197–201. https://doi.org/10.1017/thg.2012.73
- Bachner-Melman, R., Ebstein, R.P., 2014. The role of oxytocin and vasopressin in emotional and social behaviors, in: Handbook of Clinical Neurology. pp. 53–68. https://doi.org/10.1016/B978-0-444-59602-4.00004-6
- Bakermans-Kranenburg, M.J., van Ijzendoorn, M.H., 2008. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect. Neurosci. https://doi.org/10.1093/scan/nsn004
- Bakermans-Kranenburg, M.J., Van Ijzendoorn, M.H., 2014. A sociability gene' Meta-Analysis of oxytocin receptor genotype effects in humans. Psychiatr. Genet. https://doi.org/10.1097/YPG.0b013e3283643684
- Bartels, A., Zeki, S., 2004. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166. https://doi.org/10.1016/j.neuroimage.2003.11.003
- Bartz, J.A., Zaki, J., Bolger, N., Ochsner, K.N., 2011. Social effects of oxytocin in humans: Context and person matter. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2011.05.002
- Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., Fehr, E., 2008.
 Oxytocin Shapes the Neural Circuitry of Trust and Trust Adaptation in Humans.
 Neuron 58, 639–650. https://doi.org/10.1016/j.neuron.2008.04.009

Berends, Y.R., Tulen, J.H.M., Wierdsma, A.I., van Pelt, J., Kushner, S.A., van Marle,

H.J.C., 2019. Oxytocin, vasopressin and trust: Associations with aggressive behavior in healthy young males. Physiol. Behav. 204, 180–185. https://doi.org/10.1016/j.physbeh.2019.02.027

- Borland, J.M., Aiani, L.M., Norvelle, A., Grantham, K.N., O'Laughlin, K., Terranova, J.I., Frantz, K.J., Albers, H.E., 2019a. Sex-dependent regulation of social reward by oxytocin receptors in the ventral tegmental area. Neuropsychopharmacology 44, 785–792. https://doi.org/10.1038/s41386-018-0262-y
- Borland, J.M., Rilling, J.K., Frantz, K.J., Albers, H.E., 2019b. Sex-dependent regulation of social reward by oxytocin: an inverted U hypothesis. Neuropsychopharmacology. https://doi.org/10.1038/s41386-018-0129-2
- Bradley, B., Davis, T.A., Wingo, A.P., Mercer, K.B., Ressler, K.J., 2013. Family environment and adult resilience: Contributions of positive parenting and the oxytocin receptor gene. Eur. J. Psychotraumatol. https://doi.org/10.3402/ejpt.v4i0.21659
- Buffington, S.A., Di Prisco, G.V., Auchtung, T.A., Ajami, N.J., Petrosino, J.F., Costa-Mattioli, M., 2016. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 165, 1762–1775. https://doi.org/10.1016/j.cell.2016.06.001
- Buijs, R.M., 1983. Vasopressin and oxytocin—their role in neurotransmission. Pharmacol. Ther. 22, 127–141.
- Cardoso, C., Ellenbogen, M.A., Linnen, A.-M., 2014. The effect of intranasal oxytocin on perceiving and understanding emotion on the Mayer-Salovey-Caruso Emotional

Intelligence Test (MSCEIT). Emotion 14, 43–50. https://doi.org/10.1037/a0034314

- Cardoso, C., Ellenbogen, M.A., Linnen, A.-M., 2012. Acute intranasal oxytocin improves positive self-perceptions of personality. Psychopharmacology (Berl). 220, 741–749. https://doi.org/10.1007/s00213-011-2527-6
- Cesarini, D., Dawes, C.T., Fowler, J.H., Johannesson, M., Lichtenstein, P., Wallace, B.,
 2008. Heritability of cooperative behavior in the trust game. Proc. Natl. Acad. Sci.
 U. S. A. https://doi.org/10.1073/pnas.0710069105
- Charlet, A., Grinevich, V., 2017. Oxytocin Mobilizes Midbrain Dopamine toward Sociality. Neuron. https://doi.org/10.1016/j.neuron.2017.07.002
- Chen, F.S., Barth, M.E., Johnson, S.L., Gotlib, I.H., Johnson, S.C., 2011. Oxytocin receptor (OXTR) polymorphisms and attachment in human infants. Front. Psychol. https://doi.org/10.3389/fpsyg.2011.00200
- Chini, E.N., De Toledo, F.G.S., 2002. Nicotinic acid adenine dinucleotide phosphate: a new intracellular second messenger? Am. J. Physiol. Cell Physiol. 282, C1191-8. https://doi.org/10.1152/ajpcell.00475.2001
- Chong, A., Malavasi, F., Israel, S., Khor, C.C., Yap, V.B., Monakhov, M., Chew, S.H., San Lai, P., Ebstein, R.P., 2017. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship. Psychoneuroendocrinology 78, 185–192.
- Clapper, D.L., Walseth, T.F., Dargie, P.J., Hon Cheung Lee, 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem.

- Costa Jr., P.T., McCrae, R.R., 2008. The Revised NEO Personality Inventory (NEO-PI-R)., in: The SAGE Handbook of Personality Theory and Assessment, Vol 2:
 Personality Measurement and Testing. BT The SAGE Handbook of Personality Theory and Assessment, Vol 2: Personality Measurement and Testing. pp. 179–198. https://doi.org/http://dx.doi.org/10.4135/9781849200479.n9
- de Boer, A., van Buel, E.M., Ter Horst, G.J., 2012. Love is more than just a kiss: a neurobiological perspective on love and affection. Neuroscience 201, 114–124. https://doi.org/10.1016/j.neuroscience.2011.11.017
- De Dreu, C.K.W., Baas, M., Boot, N.C., 2015. Oxytocin enables novelty seeking and creative performance through upregulated approach: Evidence and avenues for future research. Wiley Interdiscip. Rev. Cogn. Sci. 6, 409–417. https://doi.org/10.1002/wcs.1354
- De Dreu, C.K.W., Baas, M., Roskes, M., Sligte, D.J., Ebstein, R.P., Chew, S.H., Tong, T., Jiang, Y., Mayseless, N., Shamay-Tsoory, S.G., 2014. Oxytonergic circuitry sustains and enables creative cognition in humans. Soc. Cogn. Affect. Neurosci. 9, 1159–1165. https://doi.org/10.1093/scan/nst094
- De Dreu, C.K.W., Greer, L.L., Handgraaf, M.J.J., Shalvi, S., Van Kleef, G.A., Baas, M., Ten Velden, F.S., Van Dijk, E., Feith, S.W.W., 2010. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science (80). 328, 1408–1411. https://doi.org/10.1126/science.1189047
- de Jong, T.R., Neumann, I.D., 2018. Oxytocin and aggression, in: Current Topics in Behavioral Neurosciences. Springer Verlag, pp. 175–192.

https://doi.org/10.1007/7854_2017_13

- Deshpande, D.A., White, T.A., Dogan, S., Walseth, T.F., Panettieri, R.A., Kannan, M.S., 2005. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am. J. Physiol. Cell. Mol. Physiol. 288, L773–L788.
- DeWall, C.N., Gillath, O., Pressman, S.D., Black, L.L., Bartz, J.A., Moskovitz, J., Stetler,
 D.A., 2014. When the Love Hormone Leads to Violence: Oxytocin Increases
 Intimate Partner Violence Inclinations Among High Trait Aggressive People. Soc.
 Psychol. Personal. Sci. 5, 691–697. https://doi.org/10.1177/1948550613516876
- Dölen, G., Darvishzadeh, A., Huang, K.W., Malenka, R.C., 2013. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184. https://doi.org/10.1038/nature12518
- Fang, Y., Li, Z., Wu, S., Wang, C., Dong, Y., He, S., 2020. Oxytocin receptor gene polymorphisms moderate the relationship between job stress and general trust in Chinese Han university teachers. J. Affect. Disord. 260, 18–23. https://doi.org/10.1016/j.jad.2019.08.080
- Feldman, R., Monakhov, M., Pratt, M., Ebstein, R.P., 2016. Review Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Af fi liation ,. Biol. Psychiatry. https://doi.org/10.1016/j.biopsych.2015.08.008
- Feldman, R., Zagoory-Sharon, O., Weisman, O., Schneiderman, I., Gordon, I., Maoz,R., Shalev, I., Ebstein, R.P., 2012. Sensitive parenting is associated with plasma oxytocin and polymorphisms in the OXTR and CD38 genes. Biol. Psychiatry 72.

https://doi.org/10.1016/j.biopsych.2011.12.025

- Feng, Chunliang, Hackett, P.D., De Marco, A.C., Chen, X., Stair, S., Haroon, E., Ditzen,
 B., Pagnoni, G., Rilling, J.K., 2015a. Oxytocin and vasopressin effects on the
 neural response to social cooperation are modulated by sex in humans. Brain
 Imaging Behav. https://doi.org/10.1007/s11682-014-9333-9
- Feng, Chunliang, Hackett, P.D., De Marco, A.C., Chen, X., Stair, S., Haroon, E., Ditzen,
 B., Pagnoni, G., Rilling, J.K., 2015b. Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain
 Imaging Behav. 9, 754–764. https://doi.org/10.1007/s11682-014-9333-9
- Feng, C., Lori, A., Waldman, I.D., Binder, E.B., Haroon, E., Rilling, J.K., 2015. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes, Brain Behav. 14, 516–525. https://doi.org/10.1111/gbb.12234
- Ferrero, E., Saccucci, F., Malavasi, F., 1999. The human CD38 gene: Polymorphism, CpG island, and linkage to the CD157 (BST-1) gene. Immunogenetics. https://doi.org/10.1007/s002510050654
- Galione, A., Lee, H.C., Busa, W.B., 1991. Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-Ribose. Science (80-.). https://doi.org/10.1126/science.1909457
- Gao, S., Becker, B., Luo, L., Geng, Y., Zhao, W., Yin, Y., Hu, J., Gao, Z., Gong, Q.,Hurlemann, R., Yao, D., Kendrick, K.M., 2016. Oxytocin, the peptide that bonds the sexes also divides them. Proc. Natl. Acad. Sci.

https://doi.org/10.1073/pnas.1602620113

- Gimpl, G., Fahrenholz, F., 2001. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. https://doi.org/10.1152/physrev.2001.81.2.629
- Gradin, V.B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., Reid, I., Hall, J., Steele, J.D., 2011. Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134, 1751–1764. https://doi.org/10.1093/brain/awr059
- Haas, B.W., Smith, A.K., Nishitani, S., 2018. Epigenetic Modification of OXTR is Associated with Openness to Experience. Personal. Neurosci. 1, e7. https://doi.org/10.1017/pen.2018.7
- Han, S., Ma, Y., 2015. A Culture-Behavior-Brain Loop Model of Human Development. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2015.08.010
- Higashida, H., 2016. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory. J. Physiol. Sci. 66, 275–282. https://doi.org/10.1007/s12576-015-0425-0
- Higashida, H., Yokoyama, S., Kikuchi, M., Munesue, T., 2012. CD38 and its role in oxytocin secretion and social behavior. Horm. Behav.
 https://doi.org/10.1016/j.yhbeh.2011.12.011
- Higashida, H., Yuhi, T., Akther, S., Amina, S., Zhong, J., Liang, M., Nishimura, T., Liu,
 H.-X., Lopatina, O., 2018. Oxytocin release via activation of TRPM2 and CD38 in
 the hypothalamus during hyperthermia in mice: Implication for autism spectrum
 disorder. Neurochem. Int. 119, 42–48. https://doi.org/10.1016/j.neuint.2017.07.009

Inoue, H., Yamasue, H., Tochigi, M., Abe, O., Liu, X., Kawamura, Y., Takei, K., Suga, M., Yamada, H., Rogers, M.A., Aoki, S., Sasaki, T., Kasai, K., 2010. Association
Between the Oxytocin Receptor Gene and Amygdalar Volume in Healthy Adults.
Biol. Psychiatry 68, 1066–1072. https://doi.org/10.1016/j.biopsych.2010.07.019

Jacob, S., Brune, C.W., Carter, C.S., Leventhal, B.L., Lord, C., Cook, E.H., 2007. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett. https://doi.org/10.1016/j.neulet.2007.02.001

- Jin, D., Liu, H.-X., Hirai, H., Torashima, T., Nagai, T., Lopatina, O., Shnayder, N.A.,
 Yamada, K., Noda, M., Seike, T., Fujita, K., Takasawa, S., Yokoyama, S., Koizumi,
 K., Shiraishi, Y., Tanaka, S., Hashii, M., Yoshihara, T., Higashida, K., Islam, M.S.,
 Yamada, N., Hayashi, K., Noguchi, N., Kato, I., Okamoto, H., Matsushima, A.,
 Salmina, A., Munesue, T., Shimizu, N., Mochida, S., Asano, M., Higashida, H.,
 2007. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature
 446, 41–45. https://doi.org/10.1038/nature05526
- Jones, C., Barrera, I., Brothers, S., Ring, R., Wahlestedt, C., 2017a. Oxytocin and social functioning. Dialogues Clin. Neurosci. 19, 193–201.
- Jones, C., Barrera, I., Brothers, S., Ring, R., Wahlestedt, C., 2017b. Oxytocin and social functioning. Dialogues Clin. Neurosci. 19, 193–201.
- Kitayama, S., King, A., Hsu, M., Liberzon, I., Yoon, C., 2016. Dopamine-system genes and cultural acquisition: The norm sensitivity hypothesis. Curr. Opin. Psychol. https://doi.org/10.1016/j.copsyc.2015.11.006

- Kitayama, S., King, A., Yoon, C., Tompson, S., Huff, S., Liberzon, I., 2014. The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychol. Sci. 25, 1169–1177. https://doi.org/10.1177/0956797614528338
- Kitayama, S., Uskul, A.K., 2011. Culture, mind, and the brain: Current evidence and future directions. Annu. Rev. Psychol. 62, 419–49. https://doi.org/10.1146/annurev-psych-120709-145357
- Klahr, A.M., Klump, K., Burt, S.A., 2015. A constructive replication of the association between the oxytocin receptor genotype and parenting. J. Fam. Psychol. https://doi.org/10.1037/fam0000034
- Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzefovsky, F., Cohen, L.,
 Eldman, E., Lerer, E., Laiba, E., Raz, Y., Nemanov, L., Gritsenko, I., Dina, C.,
 Agam, G., Dean, B., Bornstein, G., Ebstein, R.P., 2008. Individual differences in
 allocation of funds in the dictator game associated with length of the arginine
 vasopressin 1a receptor RS3 promoter region and correlation between RS3 length
 and hippocampal mRNA. Genes, Brain Behav. 7. https://doi.org/10.1111/j.1601183X.2007.00341.x
- Kosfeld, M., Heinrichs, M., Zak, P.J., Fischbacher, U., Fehr, E., 2005. Oxytocin increases trust in humans. Nature 435, 673–677. https://doi.org/10.1038/nature03701
- Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., Steele, J.D., 2008. Abnormal temporal difference reward-learning signals in major depression. Brain 131, 2084–

2093.

- Kurian, S.M., Le-Niculescu, H., Patel, S.D., Bertram, D., Davis, J., Dike, C., Yehyawi, N., Lysaker, P., Dustin, J., Caligiuri, M., Lohr, J., Lahiri, D.K., Nurnberger, J.I., Faraone, S. V, Geyer, M. a, Tsuang, M.T., Schork, N.J., Salomon, D.R., Niculescu, a B., 2011. Identification of blood biomarkers for psychosis using convergent functional genomics. Mol. Psychiatry 16, 37–58. https://doi.org/10.1038/mp.2009.117
- Lach, G., Schellekens, H., Dinan, T.G., Cryan, J.F., 2018. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics. https://doi.org/10.1007/s13311-017-0585-0
- Lee, H.C., Walseth, T.F., Bratt, G.T., Hayes, R.N., Clapper, D.L., 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem.
- Lee Raby, K., Cicchetti, D., Carlson, E.A., Egeland, B., Andrew Collins, W., 2013. Genetic contributions to continuity and change in attachment security: A prospective, longitudinal investigation from infancy to young adulthood. J. Child Psychol. Psychiatry Allied Discip. https://doi.org/10.1111/jcpp.12093
- Lefevre, A., Richard, N., Jazayeri, M., Beuriat, P.A., Fieux, S., Zimmer, L., Duhamel, J.R., Sirigu, A., 2017. Oxytocin and serotonin brain mechanisms in the nonhuman primate. J. Neurosci. 37, 6741–6750. https://doi.org/10.1523/JNEUROSCI.0659-17.2017

Leng, G., Ludwig, M., 2016. Intranasal Oxytocin: Myths and Delusions. Biol. Psychiatry.

https://doi.org/10.1016/j.biopsych.2015.05.003

Leng, G., Meddle, S.L., Douglas, A.J., 2008. Oxytocin and the maternal brain. Curr. Opin. Pharmacol. 8, 731–734.

Lerer, E., Levi, S., Israel, S., Yaari, M., Nemanov, L., Mankuta, D., Nurit, Y., Ebstein, R.P., 2010. Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study. Autism Res. 3. https://doi.org/10.1002/aur.156

- Lim, M.M., Young, L.J., 2006. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm. Behav. 50, 506–517.
- Liu, H.W., Smith, C.B., Schmidt, M.S., Cambronne, X.A., Cohen, M.S., Migaud, M.E., Brenner, C., Goodman, R.H., 2018. Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapyinduced degeneration. Proc. Natl. Acad. Sci. U. S. A. 115, 10654–10659. https://doi.org/10.1073/pnas.1809392115
- Lopatina, O., Inzhutova, A., Salmina, A., Higashida, H., 2013. The Roles of Oxytocin and CD38 in Social or Parental Behaviors. Front. Neurosci. https://doi.org/10.3389/fnins.2012.00182
- Love, T.M., Enoch, M.A., Hodgkinson, C.A., Peciña, M., Mickey, B., Koeppe, R.A.,
 Stohler, C.S., Goldman, D., Zubieta, J.K., 2012. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol.
 Psychiatry 72, 198–206. https://doi.org/10.1016/j.biopsych.2012.01.033

Lukas, M., de Jong, T.R., 2015. Conspecific interactions in adult laboratory rodents:

friends or foes?, in: Social Behavior from Rodents to Humans. Springer, pp. 3–24.

- Luo, L., Becker, B., Geng, Y., Zhao, Z., Gao, S., Zhao, W., Yao, S., Zheng, X., Ma, X.,
 Gao, Z., Hu, J., Kendrick, K.M., 2017. Sex-dependent neural effect of oxytocin
 during subliminal processing of negative emotion faces. Neuroimage 162, 127–137.
 https://doi.org/10.1016/j.neuroimage.2017.08.079
- Luo, S., Ma, Y., Liu, Y., Li, B., Wang, C., Shi, Z., Li, X., Zhang, W., Rao, Y., Han, S.,
 2015. Interaction between oxytocin receptor polymorphism and interdependent culture values on human empathy. Soc. Cogn. Affect. Neurosci. 10, 1273–1281. https://doi.org/10.1093/scan/nsv019
- M.M., R., S., P., D., O., M.J., B.-K., M.H., van I., 2011. Oxytocin receptor gene and depressive symptoms associated with physiological reactivity to infant crying. Soc. Cogn. Affect. Neurosci.
- Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A.L., Ortolan, E., Vaisitti, T., Aydin, S., 2008. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–86.
 https://doi.org/10.1152/physrev.00035.2007
- Marsh, A.A., Yu, H.H., Pine, D.S., Gorodetsky, E.K., Goldman, D., Blair, R.J.R., 2012. The influence of oxytocin administration on responses to infant faces and potential moderation by OXTR genotype. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-012-2775-0
- Matsunaga, M., Konagaya, T., Nogimori, T., Yoneda, M., Kasugai, K., Ohira, H., Kaneko, H., 2009. Inhibitory effect of oxytocin on accelerated colonic motility

induced by water-avoidance stress in rats. Neurogastroenterol. Motil. https://doi.org/10.1111/j.1365-2982.2009.01286.x

- McCullough, M.E., Churchland, P.S., Mendez, A.J., 2013. Problems with measuring peripheral oxytocin: can the data on oxytocin and human behavior be trusted? Neurosci. Biobehav. Rev. 37, 1485–1492.
- Meyer-Lindenberg, A., Domes, G., Kirsch, P., Heinrichs, M., 2011. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3044
- Michalska, K.J., Decety, J., Liu, C., Chen, Q., Martz, M.E., Jacob, S., Hipwell, A.E., Lee, S.S., Chronis-Tuscano, A., Waldman, I.D., Lahey, B.B., 2014. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2014.00021
- Mileva-Seitz, V., Steiner, M., Atkinson, L., Meaney, M.J., Levitan, R., Kennedy, J.L., Sokolowski, M.B., Fleming, A.S., 2013. Interaction between Oxytocin Genotypes and Early Experience Predicts Quality of Mothering and Postpartum Mood. PLoS One 8, e61443. https://doi.org/10.1371/journal.pone.0061443
- Morabito, F., Damle, R.N., Deaglio, S., Keating, M., Ferrarini, M., Chiorazzi, N., 2006. The CD38 Ectoenzyme Family: Advances in Basic Science and Clinical Practice. Mol. Med. 12, 342–344. https://doi.org/10.2119/2006-00110.Morabito
- Nave, G., Camerer, C., McCullough, M., 2015. Does Oxytocin Increase Trust in Humans? A Critical Review of Research. Perspect. Psychol. Sci. 10, 772–789.

https://doi.org/10.1177/1745691615600138

- Niculescu, A.B., Levey, D., Le-Niculescu, H., Niculescu, E., Kurian, S.M., Salomon, D., 2015. Psychiatric blood biomarkers: avoiding jumping to premature negative or positive conclusions. Mol. Psychiatry 20, 286–8. https://doi.org/10.1038/mp.2014.180
- Nishina, K., Takagishi, H., Fermin, A.S.R., Inoue-Murayama, M., Takahashi, H., Sakagami, M., Yamagishi, T., 2018. Association of the oxytocin receptor gene with attitudinal trust: role of amygdala volume. Soc. Cogn. Affect. Neurosci. https://doi.org/10.1093/scan/nsy075
- Nishina, K., Takagishi, H., Inoue-Murayama, M., Takahashi, H., Yamagishi, T., 2015. Polymorphism of the Oxytocin Receptor Gene Modulates Behavioral and Attitudinal Trust among Men but Not Women. PLoS One 10, e0137089. https://doi.org/10.1371/journal.pone.0137089
- Nishina, K., Takagishi, H., Takahashi, H., Sakagami, M., Inoue-Murayama, M., 2019. Association of polymorphism of arginine-vasopressin receptor 1A (AVPR1a) gene with trust and reciprocity. Front. Hum. Neurosci. 13, 230.
- Norman, G.J., Karelina, K., Morris, J.S., Zhang, N., Cochran, M., Courtney DeVries, A., 2010. Social Interaction Prevents the Development of Depressive-Like Behavior Post Nerve Injury in Mice: A Potential Role for Oxytocin. Psychosom. Med. 72, 519–526. https://doi.org/10.1097/PSY.0b013e3181de8678
- Pagani, J.H., Williams Avram, S.K., Cui, Z., Song, J., Mezey, E., Senerth, J.M., Baumann, M.H., Young, W.S., 2015. Raphe serotonin neuron-specific oxytocin

receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes, Brain Behav. 14, 167–176. https://doi.org/10.1111/gbb.12202

- Peltola, M.J., Yrttiaho, S., Puura, K., Proverbio, A.M., Mononen, N., Lehtimäki, T., Leppänen, J.M., 2014. Motherhood and oxytocin receptor genetic variation are associated with selective changes in electrocortical responses to infant facial expressions. Emotion. https://doi.org/10.1037/a0035959
- Petersson, M., Uvnäs-Moberg, K., Erhardt, S., Engberg, G., 1998. Oxytocin increases locus coeruleus alpha 2-adrenoreceptor responsiveness in rats. Neurosci. Lett. 255, 115–118. https://doi.org/10.1016/S0304-3940(98)00729-0
- Quarona, V., Zaccarello, G., Chillemi, A., Brunetti, E., Singh, V.K., Ferrero, E., Funaro,
 A., Horenstein, A.L., Malavasi, F., 2013. CD38 and CD157: A long journey from
 activation markers to multifunctional molecules. Cytom. Part B Clin. Cytom.
 https://doi.org/10.1002/cyto.b.21092
- Quintana, D.S., Woolley, J.D., 2016. Intranasal Oxytocin Mechanisms Can Be Better Understood, but Its Effects on Social Cognition and Behavior Are Not to Be Sniffed At. Biol. Psychiatry 79, e49–e50. https://doi.org/10.1016/j.biopsych.2015.06.021
- Rajkowski, J., Kubiak, P., Ivanova, S., Aston-Jones, G., 1997. State-Related Activity, Reactivity of Locus Ceruleus Neurons in Behaving Monkeys. Adv. Pharmacol. https://doi.org/10.1016/S1054-3589(08)60854-6
- Riebold, M., Mankuta, D., Lerer, E., Israel, S., Zhong, S., Nemanov, L., Monakhov, M. V, Levi, S., Yirmiya, N., Yaari, M., Malavasi, F., Ebstein, R.P., 2011. All-trans

Retinoic Acid Upregulates Reduced CD38 Transcription in Lymphoblastoid Cell Lines from Autism Spectrum Disorder. Mol. Med. 17, 799–806. https://doi.org/10.2119/molmed.2011.00080

- Salmina, A., Lopatina, O., Kuvacheva, N., Higashida, H., 2015. Integrative Neurochemistry and Neurobiology of Social Recognition and Behavior Analyzed with Respect to CD38-Dependent Brain Oxytocin Secretion. Curr. Top. Med. Chem. https://doi.org/10.2174/15680266113136660211
- Salmina, A.B., Lopatina, O., Ekimova, M. V., Mikhutkina, S. V., Higashida, H., 2010.
 CD38/cyclic ADP-ribose system: A new player for oxytocin secretion and regulation of social behaviour. J. Neuroendocrinol. 22, 380–392.
 https://doi.org/10.1111/j.1365-2826.2010.01970.x
- Sasaki, J.Y., 2013. Promise and Challenges Surrounding Culture-Gene Coevolution and Gene-Culture Interactions. Psychol. Inq. 24, 64–70. https://doi.org/10.1080/1047840X.2013.764814
- Scheele, D., Wille, A., Kendrick, K.M., Becker, B., Hurlemann, R., Maier, W., Stoffel-Wagner, B., Gunturkun, O., 2013. Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1314190110
- Schneiderman, I., Zagoory-Sharon, O., Leckman, J.F., Feldman, R., 2012. Oxytocin during the initial stages of romantic attachment: Relations to couples' interactive reciprocity. Psychoneuroendocrinology 37, 1277–1285. https://doi.org/10.1016/j.psyneuen.2011.12.021

- Schultz, W., Dayan, P., Montague, P.R., 1997. A neural substrate of prediction and reward. Science (80-.). 275, 1593–1599. https://doi.org/10.1126/science.275.5306.1593
- Servan-Schreiber, D., Printz, H., Cohen, J.D., 1990. A network model of catecholamiine effects: Gain, signal-to-noise ratio, and behavior. Science (80-.). https://doi.org/10.1126/science.2392679
- Shahrokh, D.K., Zhang, T.-Y., Diorio, J., Gratton, A., Meaney, M.J., 2010. Oxytocin-Dopamine Interactions Mediate Variations in Maternal Behavior in the Rat. Endocrinology 151, 2276–2286. https://doi.org/10.1210/en.2009-1271
- Shalev, I., Ebstein, R.P., 2013. Frontiers in oxytocin science: from basic to practice. Front. Neurosci. 7. https://doi.org/10.3389/fnins.2013.00250
- Shamay-Tsoory, S.G., Abu-Akel, A., 2016. The Social Salience Hypothesis of Oxytocin. Biol. Psychiatry. https://doi.org/10.1016/j.biopsych.2015.07.020
- Sheng, F., Liu, Y., Zhou, B., Zhou, W., Han, S., 2013. Oxytocin modulates the racial bias in neural responses to others' suffering. Biol. Psychol. https://doi.org/10.1016/j.biopsycho.2012.11.018
- Sue Carter, C., 1998. Neuroendocrine perspectives on social attachment and love, in: Psychoneuroendocrinology. https://doi.org/10.1016/S0306-4530(98)00055-9
- Sullivan, P.F., Fan, C., Perou, C.M., 2006. Evaluating the comparability of gene expression in blood and brain. Am. J. Med. Genet. - Neuropsychiatr. Genet. 141 B, 261–268. https://doi.org/10.1002/ajmg.b.30272

Tomova, A., Husarova, V., Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., Ostatnikova, D., 2015. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 138, 179–187. https://doi.org/10.1016/j.physbeh.2014.10.033

- Uzefovsky, F., Shalev, I., Israel, S., Knafo, A., Ebstein, R.P., 2012. Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology 37, 576–580. https://doi.org/10.1016/j.psyneuen.2011.07.018
- Van Lange, P.A.M., 2015. Generalized Trust. Curr. Dir. Psychol. Sci. 24, 71–76. https://doi.org/10.1177/0963721414552473
- Walum, H., Waldman, I.D., Young, L.J., 2016. Statistical and Methodological Considerations for the Interpretation of Intranasal Oxytocin Studies. Biol.
 Psychiatry. https://doi.org/10.1016/j.biopsych.2015.06.016
- Weisman, O., Zagoory-Sharon, O., Feldman, R., 2012. Intranasal oxytocin administration is reflected in human saliva. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2012.02.014
- Wirth, M.M., Gaffey, A.E., Martinez, B.S., 2015. Effects of Intranasal Oxytocin on Steroid Hormones in Men and Women. Neuropsychobiology 71, 202–211. https://doi.org/10.1159/000381023
- Xu, L., Becker, B., Kendrick, K.M., 2019. Oxytocin facilitates social learning by promoting conformity to trusted individuals. Front. Neurosci. 13. https://doi.org/10.3389/fnins.2019.00056

- Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A., Furuhara, K., Yuhi, T., Zhong, J., Akther, S., Goto, H., Eguchi, Y., Kitao, Y., Hori, O., Shiraishi, Y., Ozaki, N., Shimizu, Y., Kamide, T., Yoshikawa, A., Hayashi, Y., Nakada, M., Lopatina, O., Gerasimenko, M., Komleva, Y., Malinovskaya, N., Salmina, A.B., Asano, M., Nishimori, K., Shoelson, S.E., Yamamoto, H., Higashida, H., 2019.
 Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun. Biol. 2, 1–13. https://doi.org/10.1038/s42003-019-0325-6
- Yang, S.Y., Cho, S.C., Yoo, H.J., Cho, I.H., Park, M., Kim, B.N., Kim, J.W., Shin, M.-S., Park, T.W., Son, J.W., Chung, U.S., Kim, H.W., Yang, Y.H., Kang, J.O., Kim, S.A., 2010. Association study between single nucleotide polymorphisms in promoter region of AVPR1A and Korean autism spectrum disorders. Neurosci. Lett. 479, 197–200. https://doi.org/10.1016/j.neulet.2010.05.050
- Yao, S., Zhao, W., Cheng, R., Geng, Y., Luo, L., Kendrick, K.M., 2014. Oxytocin makes females, but not males, less forgiving following betrayal of trust. Int. J. Neuropsychopharmacol. 17, 1785–1792.
- Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L.J., Onaka, T., Nishimori,
 K., 2009. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor
 expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271.
 https://doi.org/10.1523/JNEUROSCI.5593-08.2009
- Young, K.A., Liu, Y., Wang, Z., 2008. The neurobiology of social attachment: A comparative approach to behavioral, neuroanatomical, and neurochemical studies.

Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 148, 401–410. https://doi.org/10.1016/j.cbpc.2008.02.004

- Young, L.J., Wang, Z., 2004. The neurobiology of pair bonding. Nat. Neurosci. https://doi.org/10.1038/nn1327
- Zhang, R., Zhang, H.-F., Han, J.-S., Han, S.-P., 2017. Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci. Bull. 33, 238–246. https://doi.org/10.1007/s12264-017-0120-7
- Zhao, W., Luo, R., Sindermann, C., Li, J., Wei, Z., Zhang, Y., Liu, C., Le, J., Quintana,D., Montag, C., 2019. Oxytocin modulation of self-other distinction is replicable and influenced by oxytocin receptor (OXTR) genotype. bioRxiv 552703.
- Zhao, Z.Y., Xie, X.J., Li, W.H., Liu, J., Chen, Z., Zhang, B., Li, T., Li, S.L., Lu, J.G.,
 Zhang, Liangren, Zhang, Li he, Xu, Z., Lee, H.C., Zhao, Y.J., 2019. A CellPermeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and
 Induce Non-apoptotic Cell Death. iScience 15, 452–466.
 https://doi.org/10.1016/j.isci.2019.05.001
- Zingg, H.H., Laporte, S.A., 2003. The oxytocin receptor. Trends Endocrinol. Metab. 14, 222–227. https://doi.org/10.1016/S1043-2760(03)00080-8
- Zocchi, E., Usai, C., Guida, L., Franco, L., Bruzzone, S., Passalacqua, M., De Flora, A., 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J. 13, 273– 283.

Aguilar-Raab, C., Läuchli, S., Bodenmann, G., Heinrichs, M., Ehlert, U., Ditzen, B., 2019. Oxytocin and

instructed couple interaction's effects on immune responses to acute dermal wound-application. Psychoneuroendocrinology 107, 53. https://doi.org/10.1016/j.psyneuen.2019.07.152

- Alaerts, K., Bernaerts, S., Vanaudenaerde, B., Daniels, N., Wenderoth, N., 2019. Amygdala– Hippocampal Connectivity Is Associated With Endogenous Levels of Oxytocin and Can Be Altered by Exogenously Administered Oxytocin in Adults With Autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 655–663. https://doi.org/10.1016/j.bpsc.2019.01.008
- Andreou, D., Comasco, E., Åslund, C., Nilsson, K.W., Hodgins, S., 2018. Maltreatment, the Oxytocin Receptor Gene, and Conduct Problems Among Male and Female Teenagers. Front. Hum. Neurosci. 12. https://doi.org/10.3389/fnhum.2018.00112
- Augustine, M.E., Leerkes, E.M., Smolen, A., Calkins, S.D., 2018. Relations between early maternal sensitivity and toddler self-regulation: Exploring variation by oxytocin and dopamine D2 receptor genes. Dev. Psychobiol. 60, 789–804. https://doi.org/10.1002/dev.21745
- Brandtzaeg, O.K., Johnsen, E., Roberg-larsen, H., Seip, K.F., Maclean, E.L., Gesquiere, L.R., Leknes, S., Lundanes, E., Wilson, S.R., 2016. Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum. Sci. Rep. 6, 1–7. https://doi.org/10.1038/srep31693
- Oh, K.-S., Kim, E.-J., Ha, J.-W., Woo, H.-Y., Kwon, M.-J., Shin, D.-W., Shin, Y.-C., Lim, S.-W., 2018. The Relationship between Plasma Oxytocin Levels and Social Anxiety Symptoms. Psychiatry Investig. 15, 1079–1086. https://doi.org/10.30773/pi.2018.08.31
- Olofsdotter, S., Åslund, C., Furmark, T., Comasco, E., Nilsson, K.W., 2018. Differential susceptibility effects of oxytocin gene (OXT) polymorphisms and perceived parenting on social anxiety among adolescents. Dev. Psychopathol. 30, 449–459. https://doi.org/10.1017/S0954579417000967
- Oppong-Damoah, A., Zaman, R.U., D'Souza, M.J., Murnane, K.S., 2019. Nanoparticle encapsulation increases the brain penetrance and duration of action of intranasal oxytocin. Horm. Behav. 108, 20–29. https://doi.org/10.1016/j.yhbeh.2018.12.011
- Pearce, E., Wlodarski, R., Machin, A., Dunbar, R.I.M., 2018. The Influence of Genetic Variation on Social Disposition, Romantic Relationships and Social Networks: a Replication Study. Adapt. Hum. Behav. Physiol. 4, 400–422. https://doi.org/10.1007/s40750-018-0101-8
- Pearce, E., Wlodarski, R., Machin, A., Dunbar, R.I.M., 2017. Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proc. Natl. Acad. Sci. 114, 5300 LP – 5305. https://doi.org/10.1073/pnas.1700712114
- Petereit, P., Rinn, C., Stemmler, G., Mueller, E.M., 2019. Oxytocin reduces the link between neural and affective responses after social exclusion. Biol. Psychol. 145, 224–235. https://doi.org/10.1016/j.biopsycho.2019.05.002
- Pfundmair, M., Reinelt, A., DeWall, C.N., Feldmann, L., 2018. Oxytocin strengthens the link between provocation and aggression among low anxiety people. Psychoneuroendocrinology 93, 124–132. https://doi.org/10.1016/j.psyneuen.2018.04.025
- Poutahidis, T., Kearney, S.M., Levkovich, T., Qi, P., Varian, B.J., Lakritz, J.R., Ibrahim, Y.M., Chatzigiagkos, A., Alm, E.J., Erdman, S.E., 2013. Microbial Symbionts Accelerate Wound Healing via the Neuropeptide Hormone Oxytocin. PLoS One 8, e78898. https://doi.org/10.1371/journal.pone.0078898
- Preis, A., Samuni, L., Mielke, A., Deschner, T., Crockford, C., Wittig, R.M., 2018. Urinary oxytocin levels in relation to post-conflict affiliations in wild male chimpanzees (Pan troglodytes verus). Horm. Behav. 105, 28–40. https://doi.org/10.1016/j.yhbeh.2018.07.009
- Quintana, D.S., Rokicki, J., van der Meer, D., Alnæs, D., Kaufmann, T., Córdova-Palomera, A., Dieset, I., Andreassen, O.A., Westlye, L.T., 2019a. Oxytocin pathway gene networks in the human brain. Nat. Commun. 10, 668. https://doi.org/10.1038/s41467-019-08503-8
- Quintana, D.S., Westlye, L.T., Alnæs, D., Kaufmann, T., Mahmoud, R.A., Smerud, K.T., Djupesland, P.G., Andreassen, O.A., 2019b. Low-dose intranasal oxytocin delivered with Breath Powered device modulates pupil diameter and amygdala activity: a randomized controlled pupillometry and fMRI study. Neuropsychopharmacology 44, 306–313. https://doi.org/10.1038/s41386-018-0241-3
- Quintana, D.S., Westlye, L.T., Smerud, K.T., Mahmoud, R.A., Andreassen, O.A., Djupesland, P.G., 2018. Saliva oxytocin measures do not reflect peripheral plasma concentrations after intranasal oxytocin administration in men. Horm. Behav. 102, 85–92. https://doi.org/10.1016/j.yhbeh.2018.05.004
- Ramsey, M.E., Fry, D., Cummings, M.E., 2019. Isotocin increases female avoidance of males in a coercive mating system: Assessing the social salience hypothesis of oxytocin in a fish species. Horm. Behav. 112, 1–9. https://doi.org/10.1016/j.yhbeh.2019.03.001

- Reed, S.C., Haney, M., Manubay, J., Campagna, B.R., Reed, B., Foltin, R.W., Evans, S.M., 2019. Sex differences in stress reactivity after intranasal oxytocin in recreational cannabis users. Pharmacol. Biochem. Behav. 176, 72–82. https://doi.org/10.1016/j.pbb.2018.11.008
- Resendez, S.L., Namboodiri, V.M.K., Otis, J.M., Eckman, L.E.H., Rodriguez-Romaguera, J., Ung, R.L., Basiri, M.L., Kosyk, O., Rossi, M.A., Dichter, G.S., Stuber, G.D., 2020. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 1515–18. https://doi.org/10.1523/JNEUROSCI.1515-18.2020
- Rilling, J.K., Chen, Xiangchuan, Chen, Xu, Haroon, E., 2018. Intranasal oxytocin modulates neural functional connectivity during human social interaction. Am. J. Primatol. 80, e22740. https://doi.org/10.1002/ajp.22740
- Rogers, C.N., Ross, A.P., Sahu, S.P., Siegel, E.R., Dooyema, J.M., Cree, M.A., Stopa, E.G., Young, L.J., Rilling, J.K., Albers, H.E., Preuss, T.M., 2018. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. Am. J. Primatol. 80, e22875. https://doi.org/10.1002/ajp.22875
- Romero, T., Konno, A., Nagasawa, M., Hasegawa, T., 2019. Oxytocin modulates responses to inequity in dogs. Physiol. Behav. 201, 104–110. https://doi.org/10.1016/j.physbeh.2018.12.023
- Rossi, A., Parada, F.J., Stewart, R., Barwell, C., Demas, G., Allen, C., 2018. Hormonal Correlates of Exploratory and Play-Soliciting Behavior in Domestic Dogs. Front. Psychol. 9. https://doi.org/10.3389/fpsyg.2018.01559
- Rubin, L.H., Li, S., Yao, L., Keedy, S.K., Reilly, J.L., Hill, S.K., Bishop, J.R., Sue Carter, C., Pournajafi-Nazarloo, H., Drogos, L.L., Gershon, E., Pearlson, G.D., Tamminga, C.A., Clementz, B.A., Keshavan, M.S., Lui, S., Sweeney, J.A., 2018. Peripheral oxytocin and vasopressin modulates regional brain activity differently in men and women with schizophrenia. Schizophr. Res. 202, 173– 179. https://doi.org/10.1016/j.schres.2018.07.003
- Rutherford, H.J.V., Guo, X.M., Wu, J., Graber, K.M., Hayes, N.J., Pelphrey, K.A., Mayes, L.C., 2018. Intranasal oxytocin decreases cross-frequency coupling of neural oscillations at rest. Int. J. Psychophysiol. 123, 143–151. https://doi.org/10.1016/j.ijpsycho.2017.09.017
- Sala, M., Han, K., Acevedo, S., Krawczyk, D.C., McAdams, C.J., 2018. Oxytocin Receptor Polymorphism Decreases Midline Neural Activations to Social Stimuli in Anorexia Nervosa. Front. Psychol. 9. https://doi.org/10.3389/fpsyg.2018.02183
- Sariyska, R., Rathner, E.-M., Baumeister, H., Montag, C., 2018. Feasibility of Linking Molecular Genetic Markers to Real-World Social Network Size Tracked on Smartphones. Front. Neurosci. 12. https://doi.org/10.3389/fnins.2018.00945
- Schiller, B., Domes, G., Heinrichs, M., 2020. Oxytocin changes behavior and spatio-temporal brain dynamics underlying inter-group conflict in humans. Eur. Neuropsychopharmacol. 31, 119–130. https://doi.org/10.1016/j.euroneuro.2019.12.109
- Schuh-Hofer, S., Eichhorn, N., Grinevich, V., Treede, R.-D., 2018. Sleep Deprivation Related Changes of Plasma Oxytocin in Males and Female Contraceptive Users Depend on Sex and Correlate Differentially With Anxiety and Pain Hypersensitivity. Front. Behav. Neurosci. 12. https://doi.org/10.3389/fnbeh.2018.00161
- Seelke, A.M., Rhine, M.A., Khun, K., Shweyk, A.N., Scott, A.M., Bond, J.M., Graham, J.L., Havel, P.J., Wolden-Hanson, T., Bales, K.L., Blevins, J.E., 2018. Intranasal oxytocin reduces weight gain in dietinduced obese prairie voles. Physiol. Behav. 196, 67–77. https://doi.org/10.1016/j.physbeh.2018.08.007
- Shao, D., Zhang, H.-H., Long, Z.-T., Li, J., Bai, H.-Y., Li, J.-J., Cao, F.-L., 2018. Effect of the interaction between oxytocin receptor gene polymorphism (rs53576) and stressful life events on aggression in Chinese Han adolescents. Psychoneuroendocrinology 96, 35–41. https://doi.org/10.1016/j.psyneuen.2018.06.002
- Sharma, K., LeBlanc, R., Haque, M., Nishimori, K., Reid, M.M., Teruyama, R., 2019. Sexually dimorphic oxytocin receptor-expressing neurons in the preoptic area of the mouse brain. PLoS One 14, e0219784. https://doi.org/10.1371/journal.pone.0219784
- Sicorello, M., Dieckmann, L., Moser, D., Lux, V., Luhmann, M., Schlotz, W., Kumsta, R., 2019. Oxytocin and the stress buffering effect of social company: A genetic study in daily life. https://doi.org/10.31234/osf.io/rjy2t
- Stevenson, J.R., McMahon, E.K., Boner, W., Haussmann, M.F., 2019. Oxytocin administration prevents

cellular aging caused by social isolation. Psychoneuroendocrinology 103, 52–60. https://doi.org/10.1016/j.psyneuen.2019.01.006

- Taşkıran, E., Erdoğan, M.A., Yiğittürk, G., Erbaş, O., 2019. Therapeutic Effects of Liraglutide, Oxytocin and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model: An Experimental Animal Study. Cardiovasc. Toxicol. 19, 510–517. https://doi.org/10.1007/s12012-019-09524-x
- Tirko, N.N., Eyring, K.W., Carcea, I., Mitre, M., Chao, M. V., Froemke, R.C., Tsien, R.W., 2018. Oxytocin Transforms Firing Mode of CA2 Hippocampal Neurons. Neuron 100, 593-608.e3. https://doi.org/10.1016/j.neuron.2018.09.008
- Tomova, L., Heinrichs, M., Lamm, C., 2019. The Other and Me: Effects of oxytocin on self-other distinction. Int. J. Psychophysiol. 136, 49–53. https://doi.org/10.1016/j.ijpsycho.2018.03.008
- Ulmer-Yaniv, A., Djalovski, A., Yirmiya, K., Halevi, G., Zagoory-Sharon, O., Feldman, R., 2018. Maternal immune and affiliative biomarkers and sensitive parenting mediate the effects of chronic early trauma on child anxiety. Psychol. Med. 48, 1020–1033. https://doi.org/10.1017/S0033291717002550
- Venta, A., Ha, C., Vanwoerden, S., Newlin, E., Strathearn, L., Sharp, C., 2019. Paradoxical Effects of Intranasal Oxytocin on Trust in Inpatient and Community Adolescents. J. Clin. Child Adolesc. Psychol. 48, 706–715. https://doi.org/10.1080/15374416.2017.1399401
- Veras, A.B., Getz, M., Froemke, R.C., Nardi, A.E., Alves, G.S., Walsh-Messinger, J., Chao, M. V., Kranz, T.M., Malaspina, D., 2018. Rare missense coding variants in oxytocin receptor (OXTR) in schizophrenia cases are associated with early trauma exposure, cognition and emotional processing. J. Psychiatr. Res. 97, 58–64. https://doi.org/10.1016/j.jpsychires.2017.11.011
- Voinsky, I., Bennuri, S.C., Svigals, J., Frye, R.E., Rose, S., Gurwitz, D., 2019. Peripheral Blood Mononuclear Cell Oxytocin and Vasopressin Receptor Expression Positively Correlates with Social and Behavioral Function in Children with Autism. Sci. Rep. 9, 13443. https://doi.org/10.1038/s41598-019-49617-9
- Wagner, U., Echterhoff, G., 2018. When Does Oxytocin Affect Human Memory Encoding? The Role of Social Context and Individual Attachment Style. Front. Hum. Neurosci. 12. https://doi.org/10.3389/fnhum.2018.00349
- Wang, B., Wang, L., Wang, K., Tai, F., 2018. The effects of fathering experience on paternal behaviors and levels of central expression of oxytocin and dopamine-2 type receptors in mandarin voles. Physiol. Behav. 193, 35–42. https://doi.org/10.1016/j.physbeh.2018.02.043
- Wang, S.-C., Lin, C.-C., Chen, C.-C., Tzeng, N.-S., Liu, Y.-P., 2018. Effects of Oxytocin on Fear Memory and Neuroinflammation in a Rodent Model of Posttraumatic Stress Disorder. Int. J. Mol. Sci. 19, 3848. https://doi.org/10.3390/ijms19123848
- Wang, Y., Zhao, S., Liu, X., Zheng, Y., Li, L., Meng, S., 2018. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother. 107, 262– 269. https://doi.org/10.1016/j.biopha.2018.07.148
- Warren, K.R., Wehring, H.J., Liu, F., McMahon, R.P., Chen, S., Chester, C., Kelly, D.L., 2018. Effects of intranasal oxytocin on satiety signaling in people with schizophrenia. Physiol. Behav. 189, 86–91. https://doi.org/10.1016/j.physbeh.2018.03.008
- Wee, C.L., Nikitchenko, M., Wang, W.-C., Luks-Morgan, S.J., Song, E., Gagnon, J.A., Randlett, O., Bianco, I.H., Lacoste, A.M.B., Glushenkova, E., Barrios, J.P., Schier, A.F., Kunes, S., Engert, F., Douglass, A.D., 2019. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat. Neurosci. 22, 1477–1492. https://doi.org/10.1038/s41593-019-0452-x
- Westenbroek, C., Perry, A.N., Jagannathan, L., Becker, J.B., 2019. Effect of social housing and oxytocin on the motivation to self-administer methamphetamine in female rats. Physiol. Behav. 203, 10–17. https://doi.org/10.1016/j.physbeh.2017.10.020
- Wu, H., Feng, C., Lu, X., Liu, X., Liu, Q., 2018. Oxytocin effects on the resting-state mentalizing brain network. bioRxiv. https://doi.org/10.1101/465658
- Xu, L., Becker, B., Luo, R., Zheng, X., Zhao, W., Zhang, Q., Kendrick, K.M., 2020. Oxytocin amplifies sex differences in human mate choice. Psychoneuroendocrinology 112, 104483. https://doi.org/10.1016/j.psyneuen.2019.104483
- Xu, X., Liu, C., Zhou, X., Chen, Y., Gao, Z., Zhou, F., Kou, J., Becker, B., Kendrick, K.M., 2019. Oxytocin Facilitates Self-Serving Rather Than Altruistic Tendencies in Competitive Social Interactions Via Orbitofrontal Cortex. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyz028

- Yamagishi, A., Okada, M., Masuda, M., Sato, N., 2019. Oxytocin administration modulates rats' helping behavior depending on social context. Neurosci. Res. https://doi.org/10.1016/j.neures.2019.04.001
- Yao, S., Zhao, W., Geng, Y., Chen, Y., Zhao, Z., Ma, X., Xu, L., Becker, B., Kendrick, K.M., 2018. Oxytocin Facilitates Approach Behavior to Positive Social Stimuli via Decreasing Anterior Insula Activity. Int. J. Neuropsychopharmacol. 21, 918–925. https://doi.org/10.1093/ijnp/pyy068
- Zhang, Y., Wu, C., Chang, H., Yan, Q., Wu, L., Yuan, S., Xiang, J., Hao, W., Yu, Y., 2018. Genetic variants in oxytocin receptor gene (OXTR) and childhood physical abuse collaborate to modify the risk of aggression in chinese adolescents. J. Affect. Disord. 229, 105–110. https://doi.org/10.1016/j.jad.2017.12.024
- Zhao, Z.Y., Xie, X.J., Li, W.H., Liu, J., Chen, Z., Zhang, B., Li, T., Li, S.L., Lu, J.G., Zhang, Liangren, Zhang, Li he, Xu, Z., Lee, H.C., Zhao, Y.J., 2019. A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death. iScience 15, 452– 466. https://doi.org/10.1016/j.isci.2019.05.001
- Zimmermann, J., Deris, N., Montag, C., Reuter, M., Felten, A., Becker, B., Weber, B., Markett, S., 2018. A common polymorphism on the oxytocin receptor gene (rs2268498) and resting-state functional connectivity of amygdala subregions - A genetic imaging study. Neuroimage 179, 1–10. https://doi.org/10.1016/j.neuroimage.2018.06.014

Figures legends

Figure 1. Oxytocin induced oxytocin release

Oxytocin (OXT; *yellow circles*) stimulates oxytocin receptors (OTR). Subsequently, the G_{q/11} type G protein and phospholipase C (PLC) are activated, resulting in formation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Stimulated protein kinase C (PLC) activates CD38 and increases formation of cADPR from β-NAD⁺ inside or outside cells. cADPR activates Ca²⁺ influx TRPM2 cation channels. 2-Aminoethoxydiphenyl borate (2-APB) inhibits TRPM2 channels. IP3 induces mobilization of Ca²⁺. TRPM2 (Transient Receptor Potential Cation Channel Subfamily M Member 2) mediates Ca²⁺ influx, which also stimulates Ca²⁺ mobilization through ryanodine receptor Ca²⁺ release channels as a cofactor together with cADPR. These Ca²⁺ ions (*filled circles*) increased by Ca²⁺ amplification mechanisms stimulate OXT (*yellow*) release into the brain, which is an essential step for social memory and social behavior.

Figure 2. Structure of OXT and AVP nonapeptides

Fig. 3. Schematic model of the structure of the OXTR and its interaction with the ligand

The endogenous ligand, the nonapeptide OXT, is shown at the top left with residues numbered 1–9. The OXT receptor (shown in blue) is depicted in its proposed interaction with the ligand (shown in red). The seven putative trans- membrane domains are indicated by Roman numerals. Residues referred to in the text are indicated by numbers referring to the amino acid sequence of the human OXT receptor. The filled yellow circle on transmembrane domain III denotes residues L114, V115 and K116; reproduced by Zingg HH, Laporte SA (2003) The oxytocin receptor. *Trends Endocrinol Metab* 14(5):222–227.

Figure 4. In the Trust Game the 1st Player sends amount Y to Experimenter who in turn sends triple the amount to Player 2. At this point, Player has the option to send any fraction of amount received back to Player 1. Berg, Joyce, Dickhaut, John, & McCabe, Kevin (1995), Games and Economic Behavior 10: 122-142

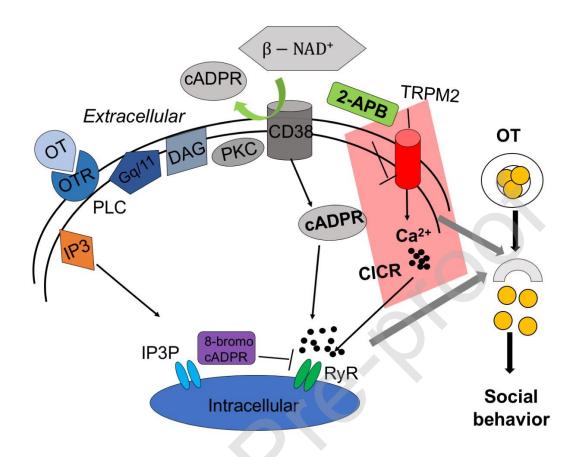
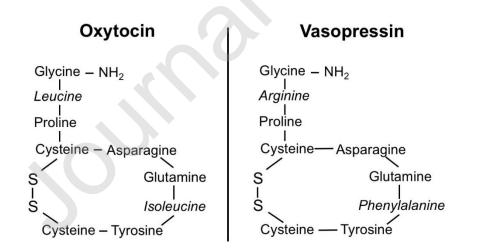
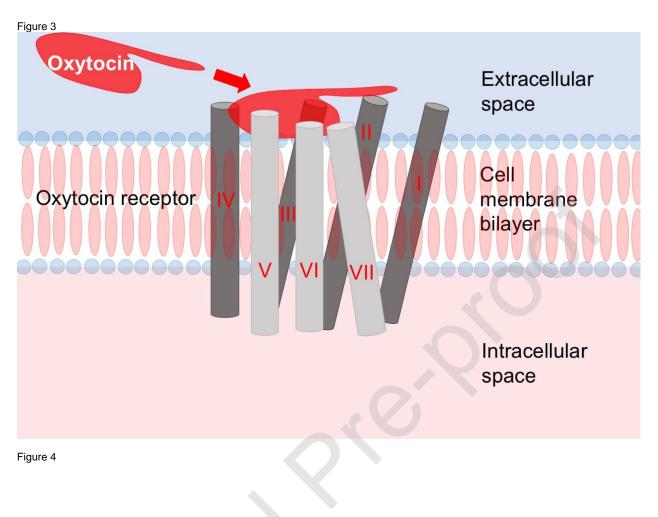
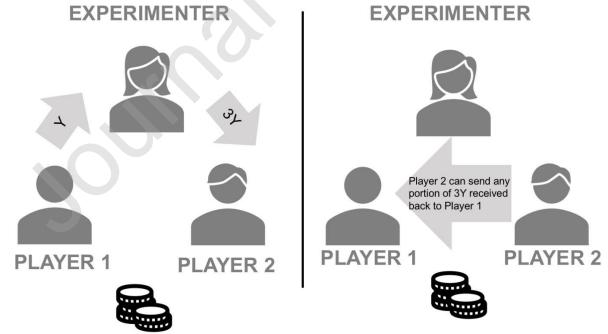





Figure 2

Table 1Title: Recent studies of the mechanism of action of oxytocin and CD38 onaffiliative behaviors

ASSESSME NT	KEY WORDS	SNP	LOCA TION	ACTION	PHENOTY PE	SAMPLE SIZE	REFERENC E
Cytokine levels	Wound healing; Oxytocin; Cytokines; Couple behavior; TNF-alpha.			OXT reduced TNF- levels 24 h post wounding); Friendly behavior during couple interaction predicted lower TNF-alpha levels at 24 h post wounding; OXT and friendly behavior interacted to further reduce TNF-alpha.	Wound healing	80 couples 160 individuals	(Aguilar- Raab et al., 2019)
fMRI; Endogenous Salivary OXT; INA OXT	Amygdala; Attachment; Autism spectrum disorders; Hippocampu s; Oxytocin; Resting- state fMRI.			Peripheral OXT corr. with secure attachment; no corr. with ASD symptoms; neural level, >>endogenous OXT with << interregional functional coupling between amygdala and hippocampus; INA OXT - further reduction in amygdala– hippocampal connectivity.	Autism Attachmen t	40 patients OXT group, n = 22; placebo group, n = 18); 24 IU OXT INA	(Alaerts et al., 2019)
Conduct Problems OXTR genotype	oxytocin receptor; gene, rs53576; maltreatmen t; conduct problems; gene– environment ; interaction.	OXTR rs53576	intronic	Association between maltreatment and conduct problems independent of the genotype; F G allele carriers >> conduct problems & >>	Maltreatm ent	691 boys and 900 girls	(Andreou et al., 2018)

				among			
				maltreated			
				group	-		
Mother- child interactions; Toddler self- regulation (assessed through compliance and vagal withdrawal during a toy clean-up task @ 2 years of age. Toddlers'	GxE; infancy; maternal sensitivity; RSA; self- regulation.	OXTR rs53576 , D2 dopami ne receptor gene DRD2 TaqIA, rs18224 97		diathesis-stress patterns, predicting compliance for the GG genotype group, and pre- dicting physiological regulation (vagal withdrawal) for the AA/AG genotype group	Early maternal sensitivity ; Toddler self- regulation	6 months and 1&2 year of age (N = 186)	(Augustine et al., 2018)
electro- cardiogram – vagal tone						\bigcirc	
SMART PHONES	Personality; neuroscienc e.	rs22684 98 <i>OXTR</i>	Adjace nt to. promot er	Active contact; incoming calls	Social network size	N=117 (77 F)	(Sariyska et al., 2018)
ECOLOGIC AL MOMENTA RY ASSESSME NT (EMA)	social buffering; stress; oxytocin; ecological momentary assessment (EMA).	rs22684 98 rs53576 <i>OXTR</i>	~ promot er intronic	CG hap = NO social buffering; TG & CA significant social buffering	Social stress	N=317 (77% F)	(Sicorello et al., 2019)
QUESTION NAIRES	GxE; Social anxiety; Parenting; Diathesis- stress; Plasticity genes.	rs48136 25 rs27703 78 OXT Neurop hysin 1 prepro- peptide	Intron, n.c. downst ream	Parenting style x OXTR X Differential susceptibility framework for rs4813625; rs2770378 the results indicated a <i>diathesis</i> – stress type of interaction	Social anxiety adolescen ts	N=1,359 (59.4% F)	(Olofsdotter et al., 2018)
QUESTION NAIRES Relationship Assessment Scale (RAS)] & sexual attitudes and behaviors [Sociosexua I Orientation	romantic relationship; social networks; social neuro- peptides.	OXTR rs22284 85 RMET non- linear (domde v P = 0.049) SOI-R SCORE S	rs2228 485 Synony -mous coding variant AAC leucine G>A; rs2378 87	1.Non-linear relationship with SOI-R scores 2.dyadic relationship 3. Wider network	Sexual relationshi ps	757 white British (423F)	(Pearce et al., 2017)

Inventory Revised & (SOI-R)] more generally		rs23788 7 rs22684 90 rs22542 98 rs13316 193 rs53576 rs23789 7 rs46863 02 WIDER NETW ORK persona I network size, OXTR rs23788 7	intron variant			6	
REPLICATI ON STUDY: PEARCE ('17) QUESTION NAIRES RMET; EQ; ECR experience close relationships ; SOI-R dyadic relationships ; social network size; Relationship Assessment Scale (RAS); Other in Self (IOS) scale		OXTR 10 SNPs Additivit y; heteroz ygote advanta ge; domina nce. SNP level analysis no correcti on multiple testing		rs237887 related to SOI- R anxious attachment; rs53576, rs237887 in suclinical sample & RMET & IOS	Social Dispositio n, Romantic Relationsh ips & Social Networks	first sample had mental illness (N = 140, 95 female), Non-white (N = 66, 33 F) no mental illness	(Pearce et al., 2018)
Cyberball game Emotional responses (7 self- report Questionnai res; EEG	Social salience; hypothesis SSH; Late positive potential; intranasal OXT.			Syntocinon® Novartis 40 IU in 1 ml; No main effects of oxytocin on the self-reports of rejection or the LPP in exclusion trials were found; correlation	Social exclusion	90 F	(Petereit et al., 2019)

Hot sauce White noise Trait anxiety questionnair e	Oxytocin; Aggression; Provocation; Anxiety.		LPP amplitude & self-reports of rejection is observed in the placebo condition, but is << in OXT; results show that the link between neural and affective reactions to social exclusion is eliminated by oxytocin?? 24 IU 3 puffs Syntocinon® Novartis OXT >>aggression in response to provocation in low anxiety people; no difference in group and out group	Aggressio n	56 M Germans	(Pfundmair et al., 2018)
Cutaneous wound healing; Skin biopsy assay; OXT knock out; Vagotomies	Wound healing; Probiotics; Mice; oxytocin.	plasma oxytocin levels in our female C57BL/ 6 wt mice & significa nt systemi c elevatio n of OXT in animals drinking L. reuteri (from human milk) daily	Probiotics L. reuteri; ingestion in water-drinking- of a lactic acid bacterium presumably upregulates OXT in hypothalamus via vagus nerve	Wound healing Activate host CD4+Foxp 3+CD25+ immune T regulatory cells	12 animals in each group	(Poutahidis et al., 2013)
Urinary OXT levels Chimpanzee wild Only males	Oxytocin; Reconciliatio n; Bystander affiliation; Relationship repair.	URINE	Oxytocin system is activated in reconciliation with or without bystander post- conflict	REPAIRIN G RELATION SHIPS POST- CONFLICT RESOLUTI ON	10 males ~2600 observato ns	(Preis et al., 2018)

voxel x voxel volumetric gene expression maps; 3 genes: OXTR, CD38 and OXT; Each brain was sampled in 363–946 distinct locations; Agilent 8 x 60 K cDNA array chip. Exploration	Oxytocin		affiliation or affiliation alone; Supports 'valuable relationship hyp' Expression of the three selected oxytocin pathway genes was enriched in subcortical and olfactory regions and there was high co-expression with several dopaminergic and muscarinic acetyl- choline genes	distributio n of OXT, OXTR, and CD38 mRNA across the human brain	6 donor brain; custom	(Quintana et al., 2019a)
time (anxiety)- dark light preference; F exposed to coercive M vs F exposed to F decreased social preference for coercive males and increased social preference for conspecific female Results support social salience hypothesis	Isotocin; Social salience; Poeciliid; Social cognition; Social; discriminatio n; Sexual conflict; Social decision- making; Anxiety; Exploration.		Forced mating system where M coerce F to mate Isotocin (IT) > anxiety F <time with<br="">males <<social behavior towards M</social </time>	decision making & anxiety behavior		al., 2019)
Trier Social Stress Test	Cannabis Oxytocin; Self- administratio n; Sex		40 IU INA OXT-TSST condition, positive subjective effects were	Stress reactivity	31M 32F CANNABI S USERS	(Reed et al., 2019)

			 <u> </u>			
	differences;		lower and			
	Stress.		negative			
			subjective			
			effects were			
			higher in			
			women			
			compared to			
			PBO			
			administration			
			and compared			
			•			
activation of	Social		to men chemogenetic	Social		(Resendez
PVH-OT			activation of OT	behavior		
	behavior;					et al., 2020)
neurons	Male mice;		neurons within	Social		
recording of	PVN		the	salience		
OT neurons	hypothalam		paraventricular	PVH-OXT		
in awake	us.		nucleus of the	neurons		
mice using			hypothalamus	encode		
two-photon			(PVH) of male	social and		
calcium			mice (OT-Ires-	non-social		
imaging.			Cre) enhanced	stimuli,		
			social	suggesting		
			investigation	that PVH-		
			during a	OT	*	
			social choice	neurons		
			test	may act to		
				convey		
			Shank3b knock	social		
			-out (KO) mice	salience of		
			(ASD).	environme		
			Male Shank3b	ntal		
			KO mice	stimuli.		
			showed a			
			marked			
			reduction in			
			PVH-OT			
			neuron number			
			and			
			administration			
			of an OT			
			receptor			
			agonist			
		Ť	improved social			
			deficits.			
(Re-	Nucleus		OT induced	Dyadic	intranasal	(Rilling et al.,
analyzed	basalis of		widespread	social	OT (n =	2018)
data from	Meynert;		increases in	interaction	100), 20	2010)
previous	nucleus		functional	Reciprocal	100), 20 IU	
study}	accumbens;			altruism	intranasal	
fMRI & INA			connectivity in	aiu ui 5111		
	lateral		response to		AVP (n =	
OXT	septum;		positive social		100), or	
iterated	Human		interactions		placebo	
Prisoner's	Social		among men		(PL, n =	
Dilemma -	Behavioral		and		104) 50%	
same sex	Neural		widespread		F	
partner;	Network		decreases in		Emory	
Focus on	(SBNN).		functional		students	
social			connectivity in			
behavioral			response to			
Denaviorai						

	1		1		1	1	1
neural network				negative social interactions			
(SBNN)				among women			
Immunohist o-chemistry	Axons; cingulate; insula;			OT- and AVP- containing fibers in cortical	Social cognition	3 M human brains PM	(Rogers et al., 2018)
	neuropeptid es; primates.			regions relevant to social cognition in humans, chimpanzees, and rhesus macaques		Chimpanz ee 1M 2F Rhesus 3M 2F	
Food reward Pairing two individuals from the same social group and alternately ask them to complete a task in order to obtain a food reward Vary quality, effort reward =Paradigm	Domestic dogs; Inequity aversion; Oxytocin; Decision latency; Affiliation.			macaques40 IU <sensitive td="" to<="">inequityfollowing OXT>attention topartner<decision td="" time<=""></decision></sensitive>	Inequity aversion	8F 6M	(Romero et al., 2019)
Novel arena with 2 unfamiliar trainers	Exploration; play; oxytocin; cortisol; domestic dog.	4		2	Exploration Play behavior		(Rossi et al., 2018)
fMRI by measuring the amplitude of low- frequency fluctuations (ALFF)= intrinsic spontaneou s neuronal activity.	Sex differences; Resting state; Schizophren ia; Oxytocin; Vasopressin ; fMRI.			Measured [AVP] and [OXT] F SCZ lower [OXT] were associated with lower ALFF in frontal and cerebellar cortices; female C [AVP] levels were inversely associated with ALFF in the frontal cortex; male SCZ < [OXT] associated with < ALFF in the posterior cingulate; < [AVP] associated with	Schizophre nia (SCZ)	35 patients (23 M) & 60 controls "C" (24M)	(Rubin et al., 2018)

r	1	1			1		1
				<alff frontal<="" td=""><td></td><td></td><td></td></alff>			
EEG INA OXT on neural oscillations (delta, theta, alpha, beta) and their coupling during	INA OXT; Neural oscillations; Cross- frequency; coupling.			cortex ETC 24 IU OXT INA OXT << cross- frequency coupling across the slow and fast waves assessed; OXT << delta- beta, delta- alpha, theta- alpha, and theta-beta acuustica	Previous studies: Oscillations linked to specific emotional and cognitive states	Healthy nulliparous women (N=23) Mixed ethnicity	(Rutherford et al., 2018)
Depression, anxiety, and eating disorder symptoms QIDS-CR quick inventory (SIGH-A (Hamilton structured interview); (SCID-RV DSMIV (YBC-EDS) eating disorder survey: self report; fMRI	social cognition; fMRI; eating disorders; neuroimagin g; self- perception; depression; anxiety; endo- phenotypes.	rs2254 298 rs5357 6	Intron variant s	coupling. rs2254298 "A" rs2254298 (2 AA and 10 AG) < <activation posterior cingulate cortex and medial prefrontal cortex for social stimuli; >> negative connectivity between the posterior cingulate and the occipital lobe relative to the GG; rs53576 no effect</activation 	Social stimuli: visuospatia I condition, the cue was "Bumper cars: Same weight?" and in the social attribution condition, the cue was "People: All friends?"	Women Anorexics N=49 With or recovered	(Sala et al., 2018)
3 rd party decision making paradigm: participants could sacrifice their own resources to modulate the monetary gains and losses of in- and out- group members. interactions in naturalistic inter-group conflict;	Decision- making; Empathy; Inter-group conflict; Oxytocin; Social groups; Spatio- temporal brain dynamics.		0	24 IU OXT (OXT condition: N = 43; placebo condition: N = 43) Behavior: OXT eliminated the reduction in out-group gains –particularly in individuals with low emotional empathy; ERP: oxytocin replaced a neuro- physiological process associated with the negative valuation of out-group gains via a process	Inter-group conflict	N=86 M Ss: rival soccer clubs or supporters of opposing political parties.	(Schiller et al., 2020)

ERP event				associated with			
related				(+) valuation			
potential							
Total sleep deprivation (1 night) QST battery Quantitative sensory testing – thermal pain, pin prick devices; Cold pressor test	Sleep deprivation (SD); Pain sensitivity; Oxytocin; Plasma			Extracted plasma; Saliva cortisol plasma [OXT] >> sleep deprived F, not M; << heat pain thresholds corr.>> plasma [OXT], no effect cold/mechanica I pain; SD F >plasma [OXT] lower pain inhibition p<0.1); (+) corr. between anxiety-scores and plasma [OXT]-sex dependent; No change in cortisol due to SD		20 students 10M All F on contracept ives	(Schuh- Hofer et al., 2018)
Voles housed in divided cages with possibility of food sharing (FS) High-fat diet (HFD) and low-fat diet (LFD) Serum hormones, blood glucose, lipids	INA OXT; High and low- fat diet; Food sharing; Voles; Obesity.			8 IU per kg HFD > weight gain HFD + housing with LFD fed animals = inter- mediate weight gain & FS Chronic OXT INA elicits weight loss in part by food sharing for the LFD partner	Energy intake Effect of social context Predispositi on to diet induced obesity (DIO)	Prairie voles	(Seelke et al., 2018)
12-item short version of Buss and Perry Aggression Questionnai re; Adolescent Self-Rating Life Events Checklist	Aggression; OXTR; rs53576; Han Adolescents ; Stress.	rs53576	intronic	AA OXTR rs53576 homozygosity corr. with > aggression under high life stress conditions		197 Han adolescent s 143 Saliva DNA	(Shao et al., 2018)

г	a			a		(2)
Immunoche mistry and single cell PCR	OXTR neurons; Mouse; Preoptic area; anteroventra I periventricul ar nucleus (AVPV); Estrogen; Sexual dimorphism.		in M no OXTR- Venus cells in anteroventral periventricular nucleus (AVPV) within the MPOA but present in F ; expression of OXTR in AVPV is F specific- estrogen dependent	OXTR expressing neurons in mouse preoptic (POA)		(Sharma et al., 2019)
Glucocortico id levels, oxidative damage, telomere length, and anhedonia	Oxytocin; Telomeres ;Oxidative stress; Stress; Social support; Aging.		six weeks of chronic isolation > glucocorticoid levels, oxidative damage, telomere degradation and anhedonia; Daily OXT injections in isolated voles prevented these negative consequences.	Damaging effects of social isolation in prairie voles	Prairie voles	(Stevenson et al., 2019)
Group 1 placebo Group 2 Liraglutide Group 3 160 µg/kg/day oxytocin i.p. Group 4 filgrastim i.p.	Doxorubicin; Cardiotoxicit y; Liraglutide; Oxytocin; G-CSF Inflammatio n.		DXR + OXT group had the most preserved tissue integrity; least immune expression level of CASPASE-3; highest ECG QRS wave voltage amplitude; ETC.	Doxorubici n-induced (DXR) cardiomyop athy	40 male Sprague– Dawley rats	(Taşkıran et al., 2019)
label OXTR- bearing cells; Fluorescenc e images of cortical sections showed striking labeling of CA2 pyramidal cells indicating OXTR present	Hippocampu s; Area CA2; OXTR receptor;		experiments revealed a robust modulation of excitatory pyramidal cells in CA2; oxytocin modulation of multiple signaling pathways and diverse cell types operates in coordination to tune the effect of CA2	hippocamp al area CA2 neurons intrinsic properties Powerful effect of OXTRs on repetitive firing in CA2 and showed how the bursts arose from	Mice	(Tirko et al., 2018)

Image: strangerOxytocin; convocation		1	-			r	
Image: strange in the strange in th				hippocampal	signaling		
effects of oxytocin (24 IU. in 6 puffs of sprts of on wo distinction; perspective- taking; approach.Oxytocin improved visual perspective- taking and thus affected self- other distinction on the cognitive level, but had no effects on self-other distinction improved visual perspective- taking; approach.Oxytocin improved visual perspective- taking; affected self- other distinction on the cognitive level, but had no effects on self-other distinction on the perceptual- motor level nor on a control taking; approach.Oxytocin; taking; attention reorientationS6 M Ss attention reorientation(Tomova et al, 2019)Children taking)Childhood anxiety disorders; and water salivary (a); trauma maternal behavior; oxytocin; (OT), mother-child affiliation informa affiliation inhibition maternal behavior; oxytocin; (OT), mother-child affiliation informa corticin; trauma maternal behavior; oxytocin; (OT), mother-child affiliationOxytocin; taking)Children's stress traumatic stress (smother, anxiety maternal behavior; oxytocin; salivary (a); trauma, ware exposed toricin; salivary (a); trauma; ware exposed children showed higher s-lqA, more anxiety mother-child affiliationChildren's stress traumatic stress (smother, and more anxiety symptoms, pathchildren's stress traumatic stress (smother, and more anxiety symptoms, pathchildren stress traumatic stress (smother, and more anxiety symptoms, pathchildren stress stress stress (smother,				network			
effects of coxytocin (24 Syntocincic) Syntocincion- Syntaxis) on Self-other distinction; perspective- taking; approach.Oxytocin improved visual perspective- taking and thus affected self- on the cognitive level, but had no effects on on two different level, evel imitation; Social approach.Oxytocin improved visual other distinction on the cognitive level, but had no effects on on a control taking)56 M Ss al, 2019)(Tomova et al, 2019)Initiation; social approach.Social approach.Oxytocin improved visual other distinction on the cognitive level, but had no effects on on a control taking)Social approach.Oxytocin improved visual offerent distinction on the perceptual- motor level nor neorientationSelf-other distinction on the perceptual- motor level nor neorientationChildren's stress stress stress stress reactivity.Children's stress str							
effects of oxytocin (24 IU, in 6 puffs of Sprotcinon; Spray, novartis) on self-other distinction; porspective- taking: approach.Oxytocin oxytocin improved visual perspective- taking and thus affected self- other distinction on the cognitive level, but had no effects on self-other distinction on two different perspective- taking)Oxytocin; common the cognitive level, but had no effects on self-other distinction on the perspective- taking and thus approach.Childhood anxiety attachment approach.Oxytocin on the cognitive level, but had no effects on self-other distinction on the perceptual- motor level nor on a control task measuring attention reorientationChildhood anxiety anxiety anxiety anxiety anxiety symptoms, and their parenting was self-other distinction on the perceptual- task measuring attention reorientationChildren's stress trauma their parenting was maternal behavior; salivary igh) and child's salivary igh) and child's symptoms. Pathchildren tal. attachment symptoms. Pathchildren tal. attachment symptoms. Pathchildren tal. attachment symptoms. Pathchildren tal. attachment symptoms. Path							
effects of oxytocin (24 I.U. in 6 puffs of Syntaxinicion; Novartis) on self-other distinction; hintation; Novaris) on on two of therent gerspective- taking; motion on two of therent processing levels (i.e., levels (i.e., control control control control on two on a control taking)Secial the two theres the two the two the two the two the two the two the two the two the							
effects of oxytocin; Coxytocin; Self-other distinction; puffs of Syntocinon; Spray, nowarisi) on social approach.Oxytocin inconcert, Distinguishi improved visual perspective- taking and thus affected self- other distinction on the cognitive level, but had no effects on self-other distinction on two different perspective- taking; no the cognitive level, but had no effects on self-other distinction on two different perspective taking; continuousDistinguishi ng self- representation56 M Ss al, 2019)Children imitation- inhibition and higher- level taking)Children's attentionChildren's stress; maternal behavior; oxytocin, (OT), maternal behavior; oxytocin, (OT), mother-child affiliationChildren's stress; maternal behavior; oxytocin, salivary is salivary is salivary is salivary is salivary is salivary is salivary is salivary is maternal behavior; oxytocin, (OT), mother-child affiliationChildren's stress; salivary is salivary is mother-child affiliationChildren's stress; salivary is salivary is <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>							
effects of coxytocin (24 LU in 6 puffs of Syntocinon- Spray, Sintocion- Spray, Sintocion- Spray, Sortician- Spray, Movaritis) of Social approach. Self-other distinction; Perspective- taking and thus affected self- other distinction on the cognitive level, but had no effects on self-other distinction on self-other distinction on two different perspective- taking) Distinguishi ng self- other distinction on the cognitive level, but had no effects on self-other distinction on self-other distinction on the perceptual- motor level nor on a control task measuring attention and higher- level continuous setrosters; maternal and child's salivary maternal and child's salivary (OT), (OT), (OT), mother-child affiliation infiliation affiliation distorders; early life salivary maternal behavior; oxytocin; (OT), (OT), mother-child affiliation infiliation affiliation infiliation and higher- level behavior; oxytocin; (OT), mother-child affiliation infiliation affiliation infiliation and child's salivary gamptoms. Path Childrood anxiety symptoms. Path S play a trust game intrasasal; Psychopath Childrood anxiety symptoms. Path Children's stress; maternal behavior; oxytocin; (OT), mother-child affiliation (Ulmer-Yaniv exposed children stress; spice discores; exposed children softwarp anxiety symptoms. Path Children's stress strest spice stress spice spice stress spice spice stress spice spice stress spice spic							
low tocin (24 U. Lin 6 pufts of Syntocinon- Spray, Novartis) on self-other taking: Imitation; Novartis) on on two different levels (i.e., levels (i.e., leve							
I.U. in 6 puffs of Syntocinon- Spray, on taking; limitation; social approach.perspective- taking; limitation; social approach.perspective- taking and thus affected self- or the cognitive level, but had no effects on a control taking)perspective- taking; limitation; on the cognitive level, but had no effects on a control taking)perspective- taking; limitation; on the cognitive level, but had no effects on a control taking)perspective- taking; limitation- inhibition and higher- level disorders; early life stress; maternal behavior; oxytocin; salivary tgA; trust game frust game; limitationChildren stress; stress; stress; noter-shad, nore anxiety salivary tgA; trust game; frust game; limitation; stress attachment post-traumatic stress and more anxiety symptoms. PathChildren's stress; stress stress; stress; salivary tgA; trust game; limitation; stress attachment post-traumatic stress adjorders; exposed children salivary tgA; trust game; limame; post-traumatic stress attachment post-traumatic stress adjorders; exposed children solvator; salivary tgA; trust game; limamasit; prost-traumatic stress attachment post-traumatic stress attachment stress; symptoms. Pathlimamatic stress stress; stress; stress; subwed higher s-lgA, more anxiety symptoms. Pathlimamatic stress stress; stress						56 M Ss	
putfs of Syntocinon- Syntaction Spray, Novartis) on self-other distinction on two different levels (i.e., levels (i.e.							al., 2019)
Syntocinon- Spray, Novartis)Imitation; Imitation; Social approach.affected self- other distinction on the cognitive level, but had no effects on self-other distinction on the perceptual- motor level nor low artisonrepresentat ionsInvo different processing levels (i.e., lower-level imitation- inhibitionChildhood and higher- levelWar-exposed motor level nor on a control task measuring attention anxiety astress; salivary imation inholition(M=177; exposed motor level nor on a control task measuring attention anxiety anxiety anxiety anxiety salivary imannegic(M=177; exposed, exposed, nore anxiety anxiety anxiety anxiety anxiety anxiety anxiety anxiety salivary immunoglo uit n A(s- exposure, oxytocin; costocin; salivary lgA; trust game with their mother-child(Ulmer-Yaniv exposed, mother-child affiliation(Ulmer-Yaniv exposed, mother-child anxiety symptoms, and their parenting was characterized by reduced sensitivity, Exposed children showed higher s-lgA, more anxiety symptoms, Path(Ulmer-Yaniv exposed, reactivity, anxiety anxiety symptoms, exposed, children showed higher s-lgA, more anxiety symptoms, Path(Ulmer-Yaniv exposed, related self- other exposed, related by reduced sensitivity, Exposed, children showed higher s-lgA, more anxiety symptoms, Path(Ulmer-Yaniv exposed, related addescent soft, related adolescent soft, WF, F; Mixed(Ulmer-Yaniv exposed, exposed, related adolescent soft, 							
Spray, Novartis) on self-other distinction on two offferent processing levels (i.e., levels (i.e., level							
Novartis) on self-other distinction on two different imitation- inhibition and higher- level sevel trauma maternal and childrs salivary galivary gali maternal and childrs salivary coin; salivary coin; mother-child affiliationOxytocin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; mother-child affiliationOxytocin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; mother-child affiliationOxytocin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; salivary coin; rust game intranasal; poschopathOxytocin; salivary coin; sray, Novarits)Children's children's stress site cointol; salivary symptoms. PathAltachment sorden site cointol; sorden s							
self-other distinction on two different processing levels (i.e., lower-level imitation- inhibition and higher- level taking)approach.level, but had no effects on self-other distinction on the perceptual- motor level nor on a control task measuring attention reorientation(N= 177; exposed to anxiety anxiety anxiety signer self-other disorders; early life salivary lgA; immunoglob uim A (s- tgA) and oxytocin; salivary lgA; immunoglob uim A (s- tgA) and oxytocin; (OT), mother-child affiliationChildhood mother self-other disorders; anxiety signer self-other mothers had higher s-lgA, lower OT, more anxiety salivary lgA; trauma salivary lgA; trauma symptoms. PathAltachment talk talk there social attachment social attachment social attachment social attachment social attachment social attachment social attachment social and non- attachment social astrange poly,(Venta et al., 2019)Ss play a trust game with their mother and a strangeOxytocin; true game; hittachment poly,24 IU oxytocin (Syntocin					10115		
distinction on two different processing levels (i.e., lower-level imitation- inhibition and higher- level perspective taking)no effects on self-other distinction on the perceptual- motor level nor on a control task measuring attention reorientation(N= 177; exposed mothers had higher self-other exposed to continuous wartime arternal behavior; salivary immunoglob ulin A (s- IgA) and oxytocin; salivary immunoglob ulin A (s- IgA) and oxytocin;War-exposed mother shad higher s-IgA, lower OT, more anxiety solicorders; eartific and waternal behavior; salivary immunoglob ulin A (s- IgA) and oxytocin; mother-childChildhood anxiety salivary IgA; trauma; war exposed children salivary issues salivary immunoglob ulin A (s- IgA) and oxytocin;(Ulmer-Yaniv exposed children's salivary if A; to mother-child affiliation(Ulmer-Yaniv exposed children's salivary salivary IgA; trauma; war exposure, exposed children salivary issues salivary insuitely(Went-Yaniv exposed, children's salivary insuitely salivary insuitely(Went-Yaniv exposed, children's salivary insuitely salivary							
on two different processing levels (i.e., lower-level imitation- inhibition and higher- level perspective taking) Childhood anxiety disorders; exposed to continuous disorders; exposed to continuous warime trauma Childhood anxiety disorders; exposed; disorders; exposed; trauma War-exposed mothers had higher- level exposed; continuous stress; maternal behavior; oxytocin; salivary and child's salivary filialiation Childhood anxiety disorders; exposed; trauma; maternal behavior; oxytocin; control and child's salivary filialiation Childhood anxiety disorders; exposed; children exposure, disorders; exposed; characterized by reduced children showed higher s-IgA, more anxiety anxiety symptoms. Path (N= 177; exposed; children's stress stress tress characterized by reduced children showed higher s-IgA, more anxiety symptoms. Path (N= 177; exposed; children's characterized by reduced children showed higher s-IgA, more anxiety symptoms. Path (Venta et al., 2019) Ss play a trust game with their mother and a stranger Coxytocin; Trust game; Intranasa; Poychopath olgy. 24 IU oxytocin (Syntocinon- Spray, Novartis) attachment -related Mixed 122 adolescent s 70% F; (Venta et al., 2019)		approach					
processing levels (i.e., lower-level imitation- inhibition and higher- level perspective taking)Childhood anxiety disorders; early life anxiety disorders; early life salivary imaternal behavior; salivary imaternal behavior; oaxtocin; salivary imaternal behavior; oaxtocin; salivary imaternal and child's salivary imaternal behavior; oaxtocin; salivary imaternal behavior; oaxtocin; salivary imaternal disorders; early life salivary imaternal behavior; oaxtocin; salivary imaternal behavior; oaxtocin; salivary lgA; trauma war exposed characterized by reduced sensitivity. Exposed children solutionChildren's stress reactivity anxiety(Ulmer-Yaniv exposed; children's lad higher s-IgA, lower OT, more anxiety was characterized by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children stress disorder, and more anxiety symptoms. Path(Ulmer-Yaniv exposed; characterized by reduced sensitivity. Exposed children stress disorder, and more anxiety symptoms. Path(Ulmer-Yaniv etal.Ss play a trust game with their mother and a strangerOxytocin; Trust game; Pay, hovaris)24 IU oxytocin stress disorder, and more anxiety stress stress stress disorder, and more anxiety symptoms. Path2122 adolescent s 70% F; related ad non- attachment s 70% F;							
ievel (i.e., lower-level imitation- inhibition and higher- level perspective taking) Children continuous disorders; early life stress; maternal and child's salivary maternal and child's salivary maternal and child's salivary maternal and child's salivary mother-child affiliation SS play a trust game with their mother and p A Spapa s play a trust game with their mother and p A Spapa a stranger mother and p A Spapa mother and	different			distinction on			
Iower-level imitation- inhibition and higher- level perspective taking)Childhood anxiety disorders; early life stress; maternal behavior; oxytocin; (OT), mother-child affiliationChildron's stress; maternal behavior; oxytocin; salivary IgA; trauma; war exposed behavior; oxytocin; (OT), mother-childChildhood anxiety disorders; behavior; oxytocin; salivary IgA; trauma; war exposed; characterized by reduced sensitivity. Exposed children survey(Ulmer-Yaniv exposed; characterized by reduced sensitivity. Exposed children soluter survey(Ulmer-Yaniv exposed; reactivity anxiety survey survey salivary IgA; trauma; war exposure. IgA, and characterized by reduced sensitivity. Exposed children stress disorder, and more anxiety symptoms. Path(N= 177; exposed; characterized by reduced sensitivity. Exposed children stress disorder, and more anxiety symptoms. Path(Venta et al., 2018) characterized by reduced sensitivity. Exposed children stress disorder, and more anxiety symptoms. Path(Venta et al., 2019)Ss play a trust game with their mother and a strangerOxytocin; Trust game; Pyschopath ology.24 IU oxytocin Spray, Novartis)attachment -related and non- attachment -related mother and and non- attachment ology.122 (Venta et al., 2019)							
imitation- inhibition and higher- level perspective taking)Childhood anxiety anxiety disorders; early life stress; maternal and child's salivary salivary ulin A (s- IgA) and coxytocin; (OT), mother-child affiliationChildhood anxiety anxiety early life stress; salivary lgA; trauma; war exposed; salivary lgA; trauma; war exposed; salivary lgA; trauma; war exposed; trauma; war exposed; trauma; war elgA) and oxytocin; trust game with their nother-child affiliationChildhood attentionWar-exposed mother s-IgA, lower OT, more anxiety selfanger showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, anxiety symptoms, and their parenting was selfanger showed higher s-IgA, more anxiety symptoms, and their parenting was selfanger showed higher s-IgA, more anxiety symptoms, and traumatic stress disorder, and more anxiety symptoms, and traumatic stress disorder, and more anxiety symptoms, PathAttachment attachment s traumatic s traumatic s s s on trust game intranasal; persychopathOxytocin; talk(Venta et al., talk addiescent s traumatic s traumatic s traumatic s s traumatic s s traumatic s <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>							
inhibition and higher- level perspective taking)Childhood exposed to anxiety disorders; early life early life and child's salivary imaternal behavior; balind's salivary traumaWar-exposed mothers had higher s-IgA, lower OT, more anxiety symptoms, and their parenting was characterized by reduced sensitivity, salivary imather-child affiliation(N= 177; exposed; maternal behavior; behavior; salivary salivary ga; trauma; war exposed, characterized by reduced sensitivity, exposed, characterized by reduced sensitivity, exposed, characterized by reduced sensitivity, exposed, characterized by reduced sensitivity, exposed, characterized by reduced sensitivity, exposed, children source, exposed, ch							
and higher- level perspective taking)Childhood anxiety exposed to continuous disorders; early life stress; maternal behavior; salivary immunoglob ulin A (s- IgA) and oxytocin; (OT), (OT),Childhood anxiety stress; maternal behavior; salivary lgA; trauma; ware exposure.War-exposed mothers had higher s-IgA, lower OT, more anxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children salivarychildren's exposed; naxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children s-IgA, nore anxiety symptoms. Pathchildren's stress reactivity anxiety stress filorders sensitivity. Exposed children slorders and post-traumatic stress disorder, and more anxiety symptoms. Pathchildren's stress characterized by reduced sensitivity. Exposed children slorders and post-traumatic stress disorder, and more anxiety symptoms. Pathchildren traumatic stress disorder, and more anxiety symptoms. Pathditachment related adolescent s 70% F; mitachment related122 adolescent s 70% F; mitachment related(Venta et al., 2019)							
level perspective taking)Childhood anxiety anxiety disorders; early life stress; maternal and child's salivary immunoglob trauma; war ulin A (s- (OT), (OT),Childhood anxiety early life stress; maternal behavior; salivary lgA; timmunoglob trauma; war exposed; salivary lgA; timmunoglob trauma; war exposed; salivary lgA; timmunoglob trauma; war exposed; salivary lgA; timmunoglob trauma; war exposed; trauma; war exposed; traumatic stress disorder, and more anxiety symptoms. Pathchildren's traumatic stress disorder, and more anxiety symptoms. Pathchildren's traumatic stress disorder, and more anxiety symptoms. Pathchildren's traumatic stress disorder, and more anxiety symptoms. Pathtatachment tralated adolescent s To% F; tralated Mixed122 adolescent s To% F; tralated Mixed							
perspective taking)Childhood anxietyWar-exposed mothers had higher s-lgA, lower OT, more anxiety sativarychildren's stress; reactivity anxiety sativary(N= 177; exposed; reactivity anxiety maternal behavior; oxytocin; trauma(Ulmer-Yaniv et al., 2018)maternal and child's sativary sativary immunoglob ulin A (s- lgA) and oxytocin; (OT),Sativary exposure.Sativary sativary sativary sativarySativary sativary sativary sativary sativary sativary sativary sativaryChildren's stress; maternal behavior; oxytocin; (OT), mother-child affiliationChildren's stress stress characterized by reduced sensitivity. Exposed children showed higher s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Path122 adolescent adolescent stress disorder, adolescent stress disorder, and more anxiety symptoms. Path(Venta et al., 2019)Ss play a trust game with their mother and Psychopath ology.Oxytocin; trust game; lintranasal; by ology.24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related122 adolescent s 70% F; mater				reonentation			
taking)ChildhoodWar-exposed(N= 177; exposed; mothers had highers-lgA, lower OT, more anxiety(N= 177; exposed; exposed; highers-lgA, lower OT, more anxiety symptoms, and their parenting was salivary salivary salivary salivary salivary (OT), mother-child affiliationOxytocin; exposed; salivary salivary salivary salivary trauma; war exposure.(Ulmer-Yaniv exposed; highers-lgA, lower OT, more anxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children showed higher s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety(N= 177; exposed; N= 101, controls; N= 76Ss play a trust game with their mother and Pay.Oxytocin; Trust game; Intranasal; PathZ4 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related122 adolescent s dolescent s dolescent adolescent s dolescent s d							
Children exposed to continuous wartime traumaChildhood anxiety disorders; early life stress; maternal behavior; oand child's salivary lifa and child's oxytocin; (OT), mother-child affiliationChildhood anxiety stress; maternal behavior; oxytocin; salivary lgA; trauma; war exposure.War-exposed mothers had higher s-IgA, lower OT, more anxiety symptoms, and their parenting was characterized by reduced sensitivity.children's stress; maternal behavior; oxytocin; salivary lgA; trauma; war exposure.(Ulmer-Yaniv exposed; mother s-IgA, mother-child affiliation(Ulmer-Yaniv exposed; mother s-IgA, mother and post-traumatic stress disorder, anxiety symptoms. Path(hidren's stress children sometana sensitivity.(Ulmer-Yaniv exposed; mother stress; N= 76Ss play a trust game with their mother and pog.Oxytocin; Trust game; Intranasal; PathWar-exposed mother stress; children stress; stress; stress; stress; stress; stress; stress; anxiety symptoms. Pathchildren's stress; stress; stress; stress; stress; and more anxiety symptoms. Path(Venta et al., 2019)Ss play a trust game with their mother and pog.Oxytocin; Trust game; log.24 IU oxytocin (Syntocinon- Spray, Novartis)attachment attachment attachment -related122 adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adolescent adol							
continuous wartime traumadisorders; early life stress; maternal behavior; oxytocin; salivary ulin A (s- lgA) and oxytocin (OT),higher s-IgA, lower OT, more anxietyreactivity anxietyN= 101, controls; N= 76maternal ad child's salivary ulin A (s- lgA) and oxytocin (OT),behavior; oxytocin; salivary ugA; tamma; war exposure.sensitivity. Exposed characterized by reduced sensitivity.N= 101, controls; N= 76IgA) and oxytocin (OT), (OT),characterized sensitivity.by reduced sensitivity.higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. PathImage: Characterized sensitivity.N= 101, controls; N= 76Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath24 IU oxytocin Spray, Novartis)attachment attachment122 adolescent s Tow F; Mixed		Childhood		War-exposed	children's	(N= 177;	(Ulmer-Yaniv
wartime traumaearly life stress; maternal behavior; oxytocin; salivary immunoglob ulin A (s- lgA) and oxytocin (OT), mother-child affiliationearly life stress; maternal behavior; salivary lgA; trauma; war exposure.lower OT, more anxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxietyanxietycontrols; N=76Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath ology.Oxytocin Spray, Novartis)Oxytocin shietVenta et al., attachment -relatedSs play a trust game ology.Oxytocin; Trust game; Intranasal; Psychopath24 IU oxytocin Spray, Novartis)attachment -related122 adolescent s discret and non- attachment -related	exposed to						et al., 2018)
traumastress; maternal behavior; oxytocin; salivary ulin A (s- lgA) and oxytocin (OT),anxiety symptoms, and their parenting was characterized by reduced sensitivity. Exposed children showed higher s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. PathN= 76Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath ology.Oxytocin stress122 characterized sensitivity. Exposed children s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Path122 adolescent adolescent adolescent adolescent adolescent adolescent and non- attachment related(Venta et al., adolescent adolescent adolescent and non- attachment related							
maternal maternal and child'smaternal behavior; oxytocin; salivary IgA; immunoglob ulin A (s- IgA) and oxytocin (OT),maternal behavior; oxytocin; trauma; war exposure.symptoms, and their parenting was characterized by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathsymptoms, and their parenting was characterized by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety symptoms. Pathvertical sensitivity symptoms. PathSs play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath olgy.24 IU oxytocin (Syntocinon- Spray, Novartis)attachment attachment related122 adolescent adolescent adolescent adolescent adolescent attachment related		-			anxiety		
maternal and child's salivary immunoglob ulin A (s- igA) and oxytocin (OT),behavior; oxytocin; salivary lgA; trauma; war exposure.their parenting was characterized by reduced sensitivity.label{eq:alignment}IgA) and oxytocin (OT), (OT),exposure.Exposed children s-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. PathImage: Comparison of their parenting was characterized by reduced sensitivity.Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath ology.Image: Comparison of their parenting was characterized by reduced sensitivity.Image: Comparison of their parenting was characterized sensitivity.Image: Comparison of their parenting was characterized sensitivity.Image: Comparison of their parenting was characterized sensitivity.Image: Comparison of their parenting was sensitivity.Image: Comparison of their parenting sensitivity.Image: Comparison of their parenting sensitivity.Ss play a trust game with their a dot senseOxytocin; Trust game; Intranasal; Pay, Novartis)Image: Comparison of their parenting senseImage: Comparison of their parenting sense<	trauma	,				N= 76	
and child's salivary immunoglob ulin A (s- IgA) and oxytocin (OT),oxytocin; salivary IgA; trauma; war exposure.was characterized by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathwas characterized by reduced sensitivity. Exposed disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathvest characterized by reduced sensitivity. Exposed disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathvest characterized by reduced sensitivity. Exposed disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathvest characterized by reduced sensitivity. Exposed disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathvest characterized stress disorder, and more and more and more anxiety symptoms. Pathvest characterized stress disorder, adolescentvest characterized stress disorder, adolescent stress disorder, adolescent <td>maternal</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	maternal						
salivary immunoglob ulin A (s- IgA) and 							
immunoglob ulin A (s- IgA) and oxytocin (OT), mother-child affiliation Ss play a trust game with their mother and a stranger ology. trauma; war exposure. by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Path Spray, Novartis) by reduced sensitivity. Exposed children showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Path Spray, Novartis) trust game with their mother and a stranger							
IgA) and oxytocin (OT), mother-child affiliationExposed children showed higher anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. PathExposed children showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. PathImage: Comparison stress disorder, and more and more adolescent s 70% F; MixedImage: Comparison s s Tower s the comparisonImage: Comparison s s the comparison s the comparisonImage: Comparison s the comparison s the comparisonImage: Comparison s the comparison the comparisonImage: Comparison s the comparison the comparison the comparisonImage: Comparison s the comparison the comparisonImage: Comparison the comparison the comparisonImage: Comparison the comparisonImage: Comparison the comparison the comparisonImage: Comparison t							
oxytocin (OT), mother-child affiliationchildren showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathchildren showed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathvital attachment stress disorder, and more anxiety symptoms. Pathvital attachment stress disorder, and more anxiety symptoms. Pathvital attachment stress disorder, and more anxiety symptoms. Pathvital attachment stress disorder, and more anxiety symptoms. Pathvital attachment stress disorder, adolescent adolescent stress disorder, adolescent adolescent stress disorder, and non- strachment ology.vital stress disorder, attachment relatedvital stress adolescent stress adolescent adolescent stress disorder, adolescent attachment relatedvital stress adolescent stress disorder, adolescent adolescent adolescent stress disorder, adolescent adolescent adolescent stress disorder, adolescent adolesce		exposure.		sensitivity.			
(OT), mother-child affiliationShowed higher s-IgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathshowed higher s-IgA, more anxiety symsters disorder, and more anxiety symptoms. Pathvital stress disorder, and more anxiety symptoms. Pathvital stress disorder, and more anxiety symptoms. Pathvital stress disorder, and more anxiety symptoms. Pathvital stress disorder, and more anxiety symptoms. Pathvital stress disorder, and more anxiety symptoms. Pathvital stress disorder, addescent stress disorder, and more anxiety symptoms. Pathvital stress disorder, addescent stress disorder, and more addescent stress disorder, addescentvital stress addescent stress disorder, addescent stress disorder, addescentvital stress addescent stress disorder, addescent stress disorder, addescent addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent stress disorder, addescent disorder, addescent stress disorder, add							
mother-child affiliations-lgA, more anxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathstate attachmentvital stress attachmentvital stress attachmentvital stress attachmentvital stress stress stress stress stress symptoms. Pathvital stress <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>							
mother-child affiliationanxiety disorders and post-traumatic stress disorder, and more anxiety symptoms. Pathanxiety stress disorder, anxiety symptoms. PathImage: Comparison of the symptom sector address of the symptom sectorSs play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal; Psychopath ology.24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment -related122 adolescent 2019)(Venta et al., 2019)	(OT),		*				
affiliationdisorders and post-traumatic stress disorder, and more anxiety symptoms. Pathdisorders and post-traumatic stress disorder, anxiety symptoms. PathView of the text of	mother-child						
Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal;24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment -related122 adolescent 2019)(Venta et al., 2019)							
Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal;24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment -related122 adolescent 2019)(Venta et al., 2019)	annadon						
Ss play a trust game with their mother and a strangerOxytocin; Trust game; Intranasal;24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment -related122 adolescent 2019)(Venta et al., 2019)							
Ss play a trust game with their a strangerOxytocin; Trust game; Intranasal;24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment -related122 adolescent 2019)(Venta et al., 2019))		and more			
Ss play a trust gameOxytocin; Trust game;Pathattachment122 adolescent(Venta et al., 2019)with their mother and a strangerIntranasal; ology.Pathattachment Spray, Novartis)122 adolescent(Venta et al., 2019)				-			
Ss play a trust game with theirOxytocin; Trust game; Intranasal;24 IU oxytocin (Syntocinon- Spray, Novartis)attachment -related and non- attachment122 adolescent 2019)(Venta et al., 2019)with their mother and a strangerIntranasal; ology.Spray, Novartis)and non- attachment -relatedSpray, Mixedadolescent s Trust game; adolescent2019)							
trust gameTrust game;(Syntocinonrelatedadolescent2019)with theirIntranasal;Spray,and non-smother andPsychopathNovartis)attachment70% F;a strangerology.Mixed-related	Saplaya	Ovutocini			attachmant	100	() (onto at al
with theirIntranasal;Spray,and non-smother andPsychopathNovartis)attachment70% F;a strangerology.Mixed-relatedMixed							
mother and a strangerPsychopath ology.Novartis)attachment -related70% F; Mixed							2013)
a stranger ologyrelated Mixed							
	mother and	PSVCHODAID					
				Novanisj			

over the Internet. Trust game modified from Kosfeld (2005); Child Attachment Interview				OXT only affected the trust game behavior of adolescents when attachment security was moderate or low. Paradoxically , OXT reduced the investments (Trust) of healthy control subjects		Healthy controls and 75 Ss from urban psychiatric unit - severe emotional and behavioral disorders	
Positive and Negative Syndrome- Scale (PANSS); Diagnostic Interview for Genetic Studies (DIGS); DSM IV; Hamilton; WAIS-III		rs14390 8202 rs15074 6704 rs11532 4487 rs80058 195 rs15074 6704 rs11532 4487 rs61740 241	Cases with rare missen se coding SNP variatio ns Synony -mous and NS	carriers < severe negative symptoms (deficits in emotional expression & motivation) & < severe general psychopatholog y scores (depression & anxiety); lower nonverbal (performance) than verbal intelligence due to deficient perceptual organization & slow processing speed. Greater early trauma exposure (physical & sexual abuse & emotional trauma	Schizophre nia	Five of 48 cases showed rare OXTR variants	(Veras et al., 2018)
OXTR and AVPR1A gene expression in blood- peripheral blood mono- nuclear cells (PBMC); ABC, VABS, SRS, and CBCL scores	OXTR; AVPR1A; Blood (PBMC) Gene expression; ABC; VABS; SRS; CBCL scores.			OXTR & AVPR1A >> inter-individual variations;> OXTR (most informative) & AVPR1A expression < Aberrant Behavior checklist (ABc) scores; OXTR expression <	Autism (ASD)		(Voinsky et al., 2019)

	1	r		r	-	1
			severe			
			behavior and			
			higher adaptive			
			behavior on			
			additional			
			standardized			
			measures;			
			combining the			
			sum expression			
			levels OXTR,			
			AVPR1A, and			
			IGF1 >>			
			strongest corr.			
			with ABc			
			scores; Unlike			
			OXTR SNPs,			
			OXTR mRNA			
			levels seem to			
			be more			
			informative of			
			ASD severity			
react to			OXT positively	Human		(Wagner and
						(Wagner and
different			affected	memory		Echterhoff,
word			memory for	encoding		2018)
categories			participants			
within a list			who scored low			
of			on attachment			
successively			dependence			
presented			(who find			
words;			dependence on			
After a 24-h			others			
delay,			uncomfortable),			
memory for			but negatively			
all words			affected			
was tested			memory for			
individually						
			high scorers			
in a surprise			(who are			
recognition			comfortable			
memory			depending on			
test;			others).			
social (with			Oxytocin			
partner) &			effects were			
non-social			not moderated			
condition			by social vs.			
(no partner)			non-social			
			context at			
			encoding			
Mandarin		-	These data	Fathering		(B. Wang et
voles			illustrate that	experience		al., 2018)
levels of			fathering	s.periorioo		, 2010)
paternal			experience			
behavior as						
			(new fathers;			
well as			experienced			
oxytocin			fathers) could			
(OT) and			increase the			
dopamine-2			active			
type (D2)			components of			
receptors in			parental care			
the nucleus			and alter the			
	•	i	-	ı		

accumbens				expression		
(NaCC) and				levels of OXTR		
medial				and DRD2 in a		
nucleus of				region (NAc &		
the				MeA) and time-		
amygdala				dependent way		
(MeA);				(days after		
				birth).		
Determel				birtit).		
Paternal						
behavior:						
Licking,						
retrievals &						
huddling						
Single	posttraumati			SPS	core	(SC. Wang
prolonged	c stress			exaggerated	psychopath	et al., 2018)
stress	disorder;			inflammation &	ology of	or a, <u>_o</u> r o,
(SPS)+Pavl	single			fear memory	<u>PTSD</u> , i.e.,	
ovian fear	prolonged			extinction	trauma-	
conditioning	stress;			ability;	disrupted	
-RAT model	oxytocin;			Strengthening	cue/conte	
of PTSD;	pro-			OXT signaling	xtual	
abnormalitie	inflammator			may reduce the	extinction	
s of fear	y cytokines;			levels	learning	
extinction;	tumor			proinflammator		
pro-	necrosis			y markers \rightarrow		
inflammator	factor a;			Augment the		
y cytokines.	interleukin			efficacy of		
mRNA	1β;			extinction		
expression	interferon γ.			training		
of IL-1β,						
IFN-γ, and						
TNF-α in the						
medial						
prefrontal		-				
cortex						
(mPFC),						
hippocampu						
s, and						
amygdala;						
plasma						
OXT,						
corticostero						
ne, IL-1β,						
IFN-γ, and						
TNF-α						
Behavior:	Autism;			OXT improved	Autism-	(Y. Wang et
open field	Oxytocin;			the behavior	VALPORA	al., 2018)
test, tail	Inflammatio			with < anxiety,	TE mouse	, _0.0)
	n; Oxidative				model	
suspension				depression &	model	
test, marble	stress;			repetitive		
burying test	Microglia.			behavior &		
and three-				ameliorated		
chamber				social		
social				interaction;		
interaction				elevated		
test.				oxidative stress		
Oxidative				& inflammation		
Oxidative				alleviated after		
stress:				OXT treatment		
1 311535.		1	1			

	1					1
tumor necrosis factor-α, interleukin- 1β and interleukin- 6. activated microglia: immune fluorescenc e CBC,	ochizonkroni		aignificant	Self-	DSM-IV	(Warren et
CBC, Complete Metabolic Panel, & clinical ratings 24 IU OXT INA versus placebo; Preload & subsequent test meal; Self- reported satiety + preload-test meal paradigm; levels insulin, glucose, & leptin, and measures of taste & smell.	schizophreni a; oxytocin; satiety; leptin; olfaction; gustation.		significant treatment difference was solely for leptin- decrease in leptin in the oxytocin group post- administration, but no time effect or treatment by time interaction.	reported satiety	diagnosis of schizophre nia (N=16).	al., 2018)
Use a combination of optical, behavioral and genetic approaches in the larval zebrafish			noxious experience cause activation of Transient receptor potential cation channel; (TRPA1) receptor activation drives both OXT neuron firing & defensive swimming, and both the sensory & motor components of this process are encoded in	Processing of noxious stimuli; Defensive responses to noxious stimuli		(Wee et al., 2019)

Addiction; Dopamine; Microdialysi s; Social support; Oxytocin.			social housing attenuates escalation of METH intake and reinstatement of METH seeking in female rats; chronic OT treatment also reduces motivation for METH in isolated and socially housed F. Social housing did not enhance the effects of OT to reduce the motivation to self-	Methamph etamine (METH) intake	Female rats 48 rats (24 individuall y housed and 24 paired)	(Westenbroe k et al., 2019)
			METH.			
			functional connectivity (FC) maps in left temporopariet al junction (ITPJ) and right TPJ; OXT > connectivity between rTPJ and default attention network (DAN); < FC between ITPJ and medial prefrontal network (MPN); empathy trait can modulate the FC	resting- state functional magnetic resonance imaging	handed male college students Beijing	(Wu et al., 2018)
oxytocin; sex difference; mate choice; attraction;			oxytocin release during courtship may first act to amplify sex-		160 Ss 80 M	(Xu et al., 2020)
	Dopamine; Microdialysi s; Social support; Oxytocin.	Dopamine; Microdialysi s; Social support; Oxytocin.	Dopamine; Microdialysi s; Social support; Oxytocin.	Dopamine; Microdialysi s; Social support; attenuates escalation of METH intake and reinstatement of METH seeking in female rats; chronic OT treatment also reduces motivation for METH in isolated and socially housed F. Social housing did not enhance the effects of OT to reduce the motivation to self- administer METH. 24 IU OXT INA; functional connectivity (FC) maps in left temporpariet al junction (ITPJ) and right TPJ; OXT > connectivity between ITPJ and default attention network (DAN); < FC between ITPJ and medial prefrontal network (MPN); empathy trait can modulate the FC oxytocin; sex difference; mate choice; oxytocin release during countship may first act to	Addiction; Dopamine; Microdialysi s; Social support; Oxytocin. social housing attenuates escalation of METH intake and reinstatement of METH seeking in female rats; chronic OT treatment also reduces motivation for METH in isolated and socially housed F. Social housing did not enhance the effects of OT to reduce the motivation to self- administer METH. isolated and socially housed F. Social housing did not enhance the effects of OT to reduce the motivation to self- administer METH. 24 IU OXT INA; functional connectivity (FC) maps in left al junction (ITPJ) and right TPJ; OXT > connectivity between rTPJ and default attention network (DAN); < FC between ITPJ and medial prefrontal network (MPN); empathy trait can modulate the FC resting- state functional magnetic resonance imaging	Addiction; Dopamine; Microdialysi s; Social support; Oxytocin. activity social housing attenuates escalation of METH intake and reinstatement of METH seeking in female rats; chronic OT treatment also reduces motivation for METH in isolated and socially housed F. Social housing did not enhance the effects of OT to reduce the motivation to self- administer METH. Permale rats 48 rats (24 49 rats (24 49 aired) 24 IU OXT INA; functional gint functional ight functional gint function gin function gint function gint function gint function gint function

Facial				attraction and			
image rating				mate choice			
for fidelity				before			
				subsequently			
				promoting			
				romantic bonds			
INA OXT	altruism;			in the context	Altruistic	82 M	(Xu et al.,
24 IU OXT	empathy;			of competing	Self-	Chinese	2019)
(Oxytocin-	oxytocin;			motivations for	interest	University	,
spray	orbitofrontal			exhibiting	behaviors	students	
Sichuan	cortex; self-			altruistic or self-		010.00.110	
Meike	interest.			interest			
Pharmaceuti				behavior, OXT			
cal Co);				>> self-interest			
Ss played a				associated >>			
modified				activation in			
online ball-				frontal reward			
tossing				areas:			
U U				OXT did not			
game-							
Cyberball +				enhance			
\$\$ rewards				empathy			
& potential							
to display							
altruistic &							
self-interest							
behaviors				0)(T (1 0 1			
OXT ip	Oxytocin;			$OXT \rightarrow the Solo$	Helping		(Yamagishi
1mg/kg	Empathy;			group showed	behavior		et al., 2019)
open a door	Prosocial			helping			
to help a	behaviour;			behavior faster			
cagemate	Rats.			than those in			
soaked with				the Pair group;			
water;				oxytocin→helpi			
Pair and		-		ng behavior are			
Solo groups				dependent on			
				social context			
in vitro				behaviours	OXT		
BBB model				characteristic to	transport		
system:				abnormalities in	into Brain		
brain				OXT signalling			
capillary				are			
endothelial				recapitulated in			
cells;				Ager-/- mice:			
Ager-/-		*		deficits in			
male (RAGE				maternal			
KO) mice				bonding &			
lacking				hyperactivity;			
RAGE;				expression of			
CSF OXT				RAGE on			
assayed -				capillary			
Enzo RIA;				endothelial			
Immunoele				cells of the			
ctron				blood-brain			
microscopy				barrier (BBB) is			
• ,				both necessary			
Behavior:				and sufficient			
Light-dark				for the			
transition				transport of			

1				and the test			I
test; Open field test.				oxytocin into the brain; [OXT] elevated 3 rd ventricle, cisterna, amygdala, PVN of WT but not			
pharmaco- fMRI study 40 IU; Oxytocin Spray, Sichuan Meike Pharmacy Co Ss instructed to make approach responses to positive social or non-social stimuli (e.g., happy friends meeting or beautiful landscapes) or avoid responses to negative social and non-social stimuli	Oxytocin; Approach /avoidance; Anterior insula; Positive social stimuli.			Ager-/- mice OT < activity in the right striatum irrespective of response (approach/avoi d-ance) & social context, suggesting an inhibitory effect on motivational representation (decreased left ventral- emotional processing- and right dorsal AI activity- salience processing) during both appetitive approach & aversive avoidance,	approach- avoidance (AA) motivationa I processes	76 healthy male students	(Yao et al., 2018)
Aggression, childhood maltreatmen t were measured by self- reported questionnair e- Childhood Trauma Questionnai re; Buccal cells -genotyping;		rs23788 5 rs45649 70 rs14884 67 rs46863 0	Intron 3- predict ed affect transcri pt- tion 5'-UTR Upstre am Most commo n SNPs associ ated with aggres sion	Ss with OXTR rs237885 TT genotypes >> risk of aggression compared to those who carried GG or GT genotypes under the recessive model; rs237885 a synergic additive interaction with childhood physical abuse on the aggression risk	Aggression	996 participant s including 488 cases and 488 controls	(Zhang et al., 2018)

Used HEK- 293T cells and sea urchin homogenate s All in vitro experiments with cells or homogenate s				CZ-48, a cell- permeant mimetic of NMN, activated SARM1 in vitro and in cellulo to cyclize NAD and produce a Ca2+ messenger, cADPR, with similar efficiency as NMN; SARM1 catalysis was similar to CD38, despite having no sequence similarity.		6	(Zhao et al., 2019)
Whole brain seed-based functional connectivity analyses for the basolateral, centromedia I and superficial amygdala;	Amygdala; basolateral; centromedia l; superficial; resting- state; functional connectivity; rs2268498; OXTR.	rs22684 98.	upstrea m_tran script_ variant associ ated with affiliativ e and social approa ch behavi or.	stronger resting-state connectivity of all amygdala subregions to the fusiform and inferior occipital gyrus in TT- carriers compared to C- allele carriers. Additional modulations were found for the centromedial amygdala which showed stronger resting-state connectivity to inferior frontal regions and the insula in C- allele carriers and to brainstem regions in TT- carriers	subregional amygdala resting- state connectivit y	N = 143 healthy participant s (n = 52 males)	(Zimmerman n et al., 2018)
QUESTION NAIRES MINI LSAS	Plasma; OXT; Social Anxiety.	Extracte d RIA assay		High plasma OXT with total LSAS score and FEAR subscale in SAD group	Social anxiety	N=23 SAD M N=28 M Controls	(Oh et al., 2018)
MOUSE: dyadic	Nanoparticle s X BBB		Nano particle s	>>Prosocial effects; [OXT]	Social behavior		(Oppong- Damoah et al., 2019)

social]
interactions				>>CSF;>>brain			
familiar mice				, Acute – 3 days			
Pupil			8 & 24	Postdoc tests		57 M	(Quintana et
diameter;			1U;	revealed		57 101	(Quintana et al., 2019b)
Amygdala			novel	reduced pupil			al., 2013b)
activation			Breath	diameter <u>solely</u>			
from			Power	after 8 IU			
emotional			ed	intranasal			
stimuli			nasal				
Sumun			device,	oxytocin; also significant			
			intrave	relationship			
			nous	pupil diameter			
			(IV)	and right			
			oxytoci	amygdala			
			n, and	activation to			
			placeb	faces & shapes			
			0	iaces & sliapes			
Saliva &	Oxytocin;		saliva	Two doses of		57 M	(Quintana et
plasma OXT	Endocrinolo		oxytoci	Exhalation		57 101	(Quintana et al., 2018)
levels	gy; Saliva;		n	Delivery			ai., 2010)
Concludes	Neuropeptid		concen	System			
in OXT does	es; Plasma.		trations	delivered			
not reflect	65, Flasilia.		after 8	intranasal			
plasma			IU	oxytocin (8 IU			
levels but			and 24	and 24 IU),			
never			IU	intravenous			
measured			intrana	oxytocin (1 IU)			
plasma			sal	and placebo;			
levels			oxytoci				
inference			n are				
			marked				
			ly				
			inflated				
			compar				
			ed to				
			saliva				
			oxytoci				
			n				
			concen				
			trations				
			after IV				
			oxytoci				
		*	n and				
			placeb				
Dobust			0	(D/A , making)	Diacona		(Drop dtaces
Robust				(R/A + robust	Plasma OXT		(Brandtzaeg
nano liquid				nanoLC-MS) used to			et al., 2016)
chromatogra				determine total			
phy-mass spectrometr	Y			OXT			
y (nanoLC -				plasma/serum			
MS)				levels to			
platform for				startlingly high			
measuring				concentrations			
the total				(high pg/mL-			
amount of				ng/mL ~700			
OXT in				pg/ml). Similar			
human				results were			
numun					1	1	

plasma/seru	obtained when
m	combining R/A
	and ELISA;
	Compared to
	measuring free
	OXT,
	measuring total
	OXT can have
	advantages in
	e.g. biomarker
	studies.

CH3 = methylation; SS social salience; < less than, lower than; >greater than, higher than; decreased/increased; [OXT] = oxytocin levels concentrations; Ss = subjects; F = female; M = male; Corr. = correlation; PL = placebo; WT = wildtype