134 research outputs found

    Celebrity culture and public connection: bridge or chasm?

    Get PDF
    Media and cultural research has an important contribution to make to recent debates about declines in democratic engagement: is for example celebrity culture a route into democratic engagement for those otherwise disengaged? This article contributes to this debate by reviewing qualitative and quantitative findings from a UK project on 'public connection'. Using self-produced diaries (with in-depth multiple interviews) as well as a nationwide survey, the authors argue that while celebrity culture is an important point of social connection sustained by media use, it is not linked in citizens' own accounts to issues of public concern. Survey data suggest that those who particularly follow celebrity culture are the least engaged in politics and least likely to use their social networks to involve themselves in action or discussion about public-type issues. This does not mean 'celebrity culture' is 'bad', but it challenges suggestions of how popular culture might contribute to effective democracy

    Oh, Jeremy Corbyn! Why did Labour Party membership soar after the 2015 general election?

    Get PDF
    This article investigates the remarkable surge in individual membership of the Labour Party after the general election of May 2015, particularly after Jeremy Corbyn was officially nominated as a candidate for the leadership in June of that year. Using both British Election Study and Party Members Project data, we explain the surge by focussing on the attitudinal, ideological and demographic characteristics of the members themselves. Findings suggest that, along with support for the leader and yearning for a new style of politics, feelings of relative deprivation played a significant part: many ‘left-behind’ voters (some well-educated, some less so) joined Labour for the first time when a candidate with a clearly radical profile appeared on the leadership ballot. Anti-capitalist and left-wing values mattered too, particularly for those former members who decided to return to the party

    The Adolescent Cardio-Renal Intervention Trial (AdDIT): retinal vascular geometry and renal function in adolescents with type 1 diabetes

    Get PDF
    Aims/hypothesis We examined the hypothesis that elevation in urinary albumin creatinine ratio (ACR) in adolescents with type 1 diabetes is associated with abnormal retinal vascular geometry (RVG) phenotypes. Methods A cross-sectional study at baseline of the relationship between ACR within the normoalbuminuric range and RVG in 963 adolescents aged 14.4 ± 1.6 years with type 1 diabetes (median duration 6.5 years) screened for participation in AdDIT. A validated algorithm was used to categorise log10 ACR into tertiles: upper tertile ACR was defined as ‘high-risk’ for future albuminuria and the lower two tertiles were deemed ‘low-risk’. RVG analysis, using a semi-automated computer program, determined retinal vascular calibres (standard and extended zones) and tortuosity. RVG measures were analysed continuously and categorically (in quintiles: Q1–Q5) for associations with log10 ACR and ACR risk groups. Results Greater log10 ACR was associated with narrower vessel calibres and greater tortuosity. The high-risk group was more likely to have extended zone vessel calibres in the lowest quintile (arteriolar Q1 vs Q2–Q5: OR 1.67 [95% CI 1.17, 2.38] and venular OR 1.39 [0.98, 1.99]) and tortuosity in the highest quintile (Q5 vs Q1–Q4: arteriolar OR 2.05 [1.44, 2.92] and venular OR 2.38 [1.67, 3.40]). The effects of retinal vascular calibres and tortuosity were additive such that the participants with the narrowest and most tortuous vessels were more likely to be in the high-risk group (OR 3.32 [1.84, 5.96]). These effects were independent of duration, blood pressure, BMI and blood glucose control. Conclusions/interpretation Higher ACR in adolescents is associated with narrower and more tortuous retinal vessels. Therefore, RVG phenotypes may serve to identify populations at high risk of diabetes complications during adolescence and well before onset of clinical diabetes complications.This work was supported by the National Health and Medical Research Council of Australia (NHMRC 632521), JDRF (08-2007-902), Diabetes UK (DUK PO NO 2177 BDA:RD06/003341) and the British Heart Foundation

    Gendering the careers of young professionals: some early findings from a longitudinal study. in Organizing/theorizing: developments in organization theory and practice

    Full text link
    Wonders whether companies actually have employees best interests at heart across physical, mental and spiritual spheres. Posits that most organizations ignore their workforce – not even, in many cases, describing workers as assets! Describes many studies to back up this claim in theis work based on the 2002 Employment Research Unit Annual Conference, in Cardiff, Wales

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA
    corecore