80 research outputs found

    Steering Loan Modifications Post-Pandemic

    Get PDF
    As part of federal and state relief programs created during the COVID-19 pandemic, many American households received pauses on their largest debts, particularly on mortgages and student loans. Others may have come to agreements with their lenders, likewise pausing or altering payment on other debts, such as auto loans and credit cards. This relief allowed households to allocate their savings and income to necessary expenses, like groceries, utilities, and medicine. But forbearance does not equal forgiveness. At the end of the various relief periods and moratoria, people will have to resume paying all their debts, the amounts of which may have increased to account for any missed or reduced payments. Yet in the interim months, people have faced persistent unemployment and dwindling household wealth. Many likely will be unable to resume all debt payments, leading them into formal or informal bankruptcy. Incentivizing lenders to work with people to craft successful loan modifications will stave off a swell of bankruptcy filings and economic loss. The 2008 financial crisis showed how poorly prepared creditors were to offer successful debt workouts. Now is the time for policymakers to plan for the coming crash of needed loan modifications across consumer credit products. This Essay sketches a path for how that should be done

    Consumer Bankruptcy Panel: Undue Hardship: An Analysis of Student Loan Debt Discharge in Bankruptcy

    Get PDF
    The Consumer Panel focused on student loan debt, featuring judicial, academic, and practical insights and a call to action to help consumers

    Bankruptcy courts ill-prepared for tsunami of people going broke from coronavirus shutdown

    Get PDF
    As more Americans lose all or part of their incomes and struggle with mounting debts, another crisis looms: a wave of personal bankruptcies. Bankruptcy can discharge or erase many types of debts and stop foreclosures, repossessions and wage garnishments. But our research shows the bankruptcy system is difficult to navigate even in normal times, particularly for minorities, the elderly and those in rural areas

    Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines

    Get PDF
    Lactic acid bacteria (LAB) are a promising solution to reduce exposure to dietary mycotoxins because of the unique mycotoxin decontaminating characteristic of some LAB. Ochratoxin A (OTA) is one of the most prominent mycotoxins found in agricultural commodities. The present work reports on the ability of Pediococcus parvulus strains that were isolated from Douro wines that spontaneously underwent malolactic fermentation to detoxify OTA. These strains were identified and characterised using a polyphasic approach that employed both phenotypic and genotypic methods. When cultivated on OTA-supplemented MRS media, OTA was biodegraded into OTα by certain P. parvulus strains. The presence of OTα was confirmed using LC-MS/MS. The conversion of OTA into OTα indicates that the OTA amide bond was hydrolysed by a putative peptidase. The rate of OTA biodegradation was found to be dependent on the inoculum size and on the incubation temperature. Adsorption assays with dead P. parvulus cells showed that approximately 1.3% ± 1.0 of the OTA was adsorbed onto cells wall, which excludes this mechanism in the elimination of OTA by strains that degrades OTA. Under optimum conditions, 50% and 90% of OTA was degraded in 6 and 19 h, respectively. Other LAB strains that belonged to different species were tested but did not degrade OTA. OTA biodegradation by P. parvulus UTAD 473 was observed in grape must. Because some P. parvulus strains have relevant probiotic properties, the strains that were identified could be particularly relevant to food and feed applications to counteract the toxic effects of OTA.This work was funded by FEDER funds through the "Programa Operacional Factores de Competitividade - COMPETE" and by national funds through "Fundacao para a Ciencia e a Tecnologia - FCT", Ref. FCOMP-01-0124-FEDER-028029 and PTDC/AGR-TEC/3900/2012, respectively. The authors also thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from FCT

    Edible films and coatings as carriers of living microorganisms: a new strategy towards biopreservation and healthier foods

    Get PDF
    Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.Ana Guimaraes received support through grant SFRH/BD/ 103245/2014 from the Portuguese Foundation for Science and Technology (FCT). Luís Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 financed by FCT/MEC (OE). This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and of BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Vectors used in Figure were designed by Freepik.info:eu-repo/semantics/publishedVersio

    Lactic acid bacteria - Potential for control of mould growth and mycotoxins : a review

    No full text
    International audienceMost data dealing with the biopreservative activity of lactic acid bacteria (LAB) are focused on their antibacterial effects. Food spoilage by mould and the occurrence of their mycotoxins constitute a potential health hazard. Development of biological control should help improve the safety of products by controlling mycotoxin contamination. Data have actually shown that many LAB can inhibit mould growth and that some of them have the potential to interact with mycotoxins. This review summarizes these findings and demonstrates that LAB are promising biological agents for food safety
    corecore