135 research outputs found
Acute variceal bleeding in a patient with idiopathic myelofibrosis successfully treated with endoscopic variceal band ligation and chemotherapy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Idiopathic myelofibrosis is a chronic myeloproliferative disorder characterized by leukoerythroblastosis, massive splenomegaly, and increases in the reticular and collagen fibers in the bone marrow. Portal hypertension is observed in some patients with idiopathic myelofibrosis. Gastrointestinal hemorrhages, which are due mostly to the rupture of the esophageal varices, have been sporadically reported to be an infrequent complication of idiopathic myelofibrosis.</p> <p>Case presentation</p> <p>We report a case of a Japanese 63-year-old woman with myelofibrosis and variceal hemorrhage, with a background of concomitant portal and pulmonary hypertension. She was successfully treated through a combination of endoscopic variceal ligation and chemotherapy.</p> <p>Conclusion</p> <p>This is the first known report on the successful application of endoscopic variceal ligation and chemotherapy as the therapeutic procedure for an esophageal variceal hemorrhage in a patient with myelofibrosis.</p
SCN5A mutations in 442 neonates and children: genotype-phenotype correlation and identification of higher-risk subgroups.
Aims
To clarify the clinical characteristics and outcomes of children with SCN5A-mediated disease and to improve their risk stratification.
Methods and results
A multicentre, international, retrospective cohort study was conducted in 25 tertiary hospitals in 13 countries between 1990 and 2015. All patients ≤16 years of age diagnosed with a genetically confirmed SCN5A mutation were included in the analysis. There was no restriction made based on their clinical diagnosis. A total of 442 children {55.7% boys, 40.3% probands, median age: 8.0 [interquartile range (IQR) 9.5] years} from 350 families were included; 67.9% were asymptomatic at diagnosis. Four main phenotypes were identified: isolated progressive cardiac conduction disorders (25.6%), overlap phenotype (15.6%), isolated long QT syndrome type 3 (10.6%), and isolated Brugada syndrome type 1 (1.8%); 44.3% had a negative electrocardiogram phenotype. During a median follow-up of 5.9 (IQR 5.9) years, 272 cardiac events (CEs) occurred in 139 (31.5%) patients. Patients whose mutation localized in the C-terminus had a lower risk. Compound genotype, both gain- and loss-of-function SCN5A mutation, age ≤1 year at diagnosis in probands and age ≤1 year at diagnosis in non-probands were independent predictors of CE.
Conclusion
In this large paediatric cohort of SCN5A mutation-positive subjects, cardiac conduction disorders were the most prevalent phenotype; CEs occurred in about one-third of genotype-positive children, and several independent risk factors were identified, including age ≤1 year at diagnosis, compound mutation, and mutation with both gain- and loss-of-function
Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p
Impact of clinical and genetic findings on the management of young patients with Brugada syndrome.
BACKGROUND: Brugada syndrome (BrS) is an arrhythmogenic disease associated with sudden cardiac death (SCD) that seldom manifests or is recognized in childhood. OBJECTIVES: The objectives of this study were to describe the clinical presentation of pediatric BrS to identify prognostic factors for risk stratification and to propose a data-based approach management. METHODS: We studied 106 patients younger than 19 years at diagnosis of BrS enrolled from 16 European hospitals. RESULTS: At diagnosis, BrS was spontaneous (n = 36, 34%) or drug-induced (n = 70, 66%). The mean age was 11.1 ± 5.7 years, and most patients were asymptomatic (family screening, (n = 67, 63%; incidental, n = 13, 12%), while 15 (14%) experienced syncope, 6(6%) aborted SCD or symptomatic ventricular tachycardia, and 5 (5%) other symptoms. During follow-up (median 54 months), 10 (9%) patients had life-threatening arrhythmias (LTA), including 3 (3%) deaths. Six (6%) experienced syncope and 4 (4%) supraventricular tachycardia. Fever triggered 27% of LTA events. An implantable cardioverter-defibrillator was implanted in 22 (21%), with major adverse events in 41%. Of the 11 (10%) patients treated with hydroquinidine, 8 remained asymptomatic. Genetic testing was performed in 75 (71%) patients, and SCN5A rare variants were identified in 58 (55%); 15 of 32 tested probands (47%) were genotype positive. Nine of 10 patients with LTA underwent genetic testing, and all were genotype positive, whereas the 17 SCN5A-negative patients remained asymptomatic. Spontaneous Brugada type 1 electrocardiographic (ECG) pattern (P = .005) and symptoms at diagnosis (P = .001) were predictors of LTA. Time to the first LTA event was shorter in patients with both symptoms at diagnosis and spontaneous Brugada type 1 ECG pattern (P = .006). CONCLUSION: Spontaneous Brugada type 1 ECG pattern and symptoms at diagnosis are predictors of LTA events in the young affected by BrS. The management of BrS should become age-specific, and prevention of SCD may involve genetic testing and aggressive use of antipyretics and quinidine, with risk-specific consideration for the implantable cardioverter-defibrillator
Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry.
AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator
Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls.
PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing
- …