553 research outputs found

    Calculations of fire smokes behaviour in long rail tunnels

    Get PDF
    In order to simulate fire consequences in complex underground networks, we want to implement a coupling between a ID ventilation code and a CFD model or a zone model. The project consists in 3 main steps: the development of a ID ventilation code whose programming structure will support a coupling with another code, the definition of exchange of boundary conditions between the 2 codes and the validation of this exchange. In this paper we present our new ID code developed in this framework. A case study shows the global reaction of the flow to a fire and proves the interest of keeping into account the whole network instead limiting the calculation domain to a zone closed to the accident

    G6b-B Inhibits Constitutive and Agonist-induced Signaling by Glycoprotein VI and CLEC-2

    Get PDF
    Platelets play an essential role in wound healing by forming thrombi that plug holes in the walls of damaged blood vessels. To achieve this, platelets express a diverse array of cell surface receptors and signaling proteins that induce rapid platelet activation. In this study we show that two platelet glycoprotein receptors that signal via an immunoreceptor tyrosine-based activation motif (ITAM) or an ITAM-like domain, namely the collagen receptor complex glycoprotein VI (GPVI)-FcR γ-chain and the C-type lectin-like receptor 2 (CLEC-2), respectively, support constitutive (i.e. agonist-independent) signaling in a cell line model using a nuclear factor of activated T-cells (NFAT) transcriptional reporter assay that can detect low level activation of phospholipase Cγ (PLCγ). Constitutive and agonist signaling by both receptors is dependent on Src and Syk family kinases, and is inhibited by G6b-B, a platelet immunoglobulin receptor that has two immunoreceptor tyrosine-based inhibitory motifs in its cytosolic tail. Mutation of the conserved tyrosines in the two immunoreceptor tyrosine-based inhibitory motifs prevents the inhibitory action of G6b-B. Interestingly, the inhibitory activity of G6b-B is independent of the Src homology 2 (SH2)-domain containing tyrosine phosphatases, SHP1 and SHP2, and the inositol 5′-phosphatase, SHIP. Constitutive signaling via Src and Syk tyrosine kinases is observed in platelets and is associated with tyrosine phosphorylation of GPVI-FcR γ-chain and CLEC-2. We speculate that inhibition of constitutive signaling through Src and Syk tyrosine kinases by G6b-B may help to prevent unwanted platelet activation

    Fcγ Receptor–Mediated Phagocytosis in Macrophages Lacking the Src Family Tyrosine Kinases Hck, Fgr, and Lyn

    Get PDF
    Macrophage Fcγ receptors (FcγRs) mediate the uptake and destruction of antibody-coated viruses, bacteria, and parasites. We examined FcγR signaling and phagocytic function in bone marrow–derived macrophages from mutant mice lacking the major Src family kinases expressed in these cells, Hck, Fgr, and Lyn. Many FcγR-induced functional responses and signaling events were diminished or delayed in these macrophages, including immunoglobulin (Ig)G-coated erythrocyte phagocytosis, respiratory burst, actin cup formation, and activation of Syk, phosphatidylinositol 3-kinase, and extracellular signal–regulated kinases 1 and 2. Significant reduction of IgG-dependent phagocytosis was not seen in hck−/−fgr−/− or lyn−/− cells, although the single mutant lyn−/− macrophages did manifest signaling defects. Thus, Src family kinases clearly have roles in two events leading to FcγR-mediated phagocytosis, one involving initiation of actin polymerization and the second involving activation of Syk and subsequent internalization. Since FcγR-mediated phagocytosis did occur at modest levels in a delayed fashion in triple mutant macrophages, these Src family kinases are not absolutely required for uptake of IgG-opsonized particles

    A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex

    Get PDF
    Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00251-006-0134-1 and is accessible for authorized users

    A FcγRIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy

    Get PDF
    International audienceTrastuzumab is established as treatment of HER2high metastatic breast cancers but many limitations impair its efficacy. Here, we report the design of a Fab-like bispecific antibody (HER2bsFab) that displays a moderate affinity for HER2 and a unique, specific and high affinity for FcγRIII. In vitro characterization showed that ADCC was the major mechanism of action of HER2bsFab as no significant HER2-driven effect was observed. HER2bsFab mediated ADCC at picomolar concentration against HER2high, HER2low as well as trastuzumab-refractive cell lines. In vivo HER2bsFab potently inhibited HER2high tumor growth by recruitment of mouse FcγRIII and IV-positive resident effector cells and more importantly, exhibited a net superiority over trastuzumab at inhibiting HER2low tumor growth. Moreover, FcγRIIIA-engagement by HER2bsFab was independent of V/F158 polymorphism and induced a stronger NK cells activation in response to target cell recognition. Thus, taking advantage of its epitope specificity and affinity for HER2 and FcγRIIIA, HER2bsFab exhibits potent anti-tumor activity against HER2low tumors while evading most of trastuzumab Fc-linked limitations thereby potentially enlarging the number of patients eligible for breast cancer immunotherapy

    HIV-1 Inhibits Phagocytosis and Inflammatory Cytokine Responses of Human Monocyte-Derived Macrophages to P. falciparum Infected Erythrocytes

    Get PDF
    HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1Ba-L infection of monocyte-derived macrophages (MDM) on phagocytosis of opsonised P. falciparum infected erythrocytes (IE) and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR) (10 (0–28) versus (34 (27–108); IE internalised/100 MDM; p = 0.001) and decreased secretion of IL-6 (1,116 (352–3,387) versus 1,552 (889–6,331); pg/mL; p = 0.0078) and IL-1β (16 (7–21) versus 33 (27–65); pg/mL; p = 0.0078). Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals
    • …
    corecore