19 research outputs found

    Equilibre et transferts en milieux poreux

    No full text
    646 pagesL'occupation quasi statique de l'espace poreux par deux fluides (chap. 1 et 2) est déterminée par la capillarité (mouillage et tension interfaciale, loi de Laplace), et pour un liquide volatil par l'équilibre thermodynamique avec sa vapeur (loi de Kelvin). La saturation volumique est fonction de la pression capillaire (caractéristique capillaire) ou de la pression partielle de vapeur correspondante (isotherme de sorption) Qu'il s'agisse de déplacement immiscible (chap. 3) ou de changement de phase (chap. 4), la microstructure décrite par la distribution porométrique est déterminante pour l'implantation des fluides. L'analyse des caractéristiques capillaires ou des isothermes de sorption débouche sur différents procédés de caractérisation porométrique. Le caractère composite de la microstructure poreuse occupée par deux fluides joue aussi un rôle essentiel pour les processus de transport et de transfert. Les outils conceptuels de la macroscopisation (élément de volume représentatif, principe d'équilibre local, théorème de la moyenne) permettent d'établir les lois de transfert fondamentales et les conditions de leur validité, et de mettre en évidence les mécanismes de couplage (chap. 5). Les effets particuliers de la microstructure sur la nature du transport en phase gazeuse (effets Knudsen et Klinkenberg) sont exposés au chapitre 6, ainsi que les interactions liées au changement de phase. Le chapitre 7 est consacré aux applications des lois du transport isotherme : transport capillaro-gravitaire dans les sols (infiltration), procédés de séchage, diffusion d'espèces dissoutes. Pour la détermination des coefficients de transport, on présente diverses méthodes expérimentales, et les possibilités d'estimation sur la base de la porométrie. Le chapitre 8 traite des transferts couplés. Les lois de la thermomigration, établies avec l'éclairage de la macroscopisation, débouchent sur plusieurs applications, notamment les procédés de séchage, la thermomigration dans les conditions naturelles, et l'analyse des procédés d'identification des propriétés de transfert. Les processus couplés liés au gel et leurs applications sont traités, ainsi que les phénomènes de transport du fluide interstitiel couplé à la diffusion d'un composant en solution concentrée. Chaque fois que possible, les applications sont présentées ou illustrées sous forme d'exercices avec énoncé conventionnel et solution détaillée largement commentée

    Gas transfer through clay barriers

    Get PDF
    Gas transport through clay-rocks can occur by different processes that can be basically subdivided into pressure-driven flow of a bulk gas phase and transport of dissolved gas either by molecular diffusion or advective water flow (Figure 1, Marschall et al., 2005). The relative importance of these transport mechanisms depends on the boundary conditions and the scale of the system. Pressure-driven volume flow (“Darcy flow”) of gas is the most efficient transport mechanism. It requires, however, pressure gradients that are sufficiently large to overcome capillary forces in the typically water-saturated rocks (purely gas-saturated argillaceous rocks are not considered in the present context). These pressure gradients may form as a consequence of the gravity field (buoyancy, compaction) or by gas generation processes (thermogenic, microbial, radiolytic). Dissolved gas may be transported by water flow along a hydraulic gradient. This process is not affected by capillary forces but constrained by the solubility of the gas. It has much lower transport efficiency than bulk gas phase flow. Molecular diffusion of dissolved gas, finally, is occurring essentially without constraints, ubiquitously and perpetually. Effective diffusion distances are, however, proportional to the square root of time, which limits the relevance of this transport process to the range of tens to hundreds of metres on a geological time scale (millions of years). 2 Process understanding and the quantification of the controlling parameters, like diffusion coefficients, capillary gas breakthrough pressures and effective gas permeability coefficients, is of great importance for up-scaling purposes in different research disciplines and applications. During the past decades, gas migration through fully water-saturated geological clay-rich barriers has been investigated extensively (Thomas et al., 1968, Pusch and Forsberg, 1983; Horseman et al., 1999; Galle, 2000; Hildenbrand et al., 2002; Marschall et al., 2005; Davy et al., 2009; Harrington et al., 2009, 2012a, 2014). All of these studies aimed at the analysis of experimental data determined for different materials (rocks of different lithotype, composition, compaction state) and pressure/temperature conditions. The clay-rocks investigated in these studies, ranged from unconsolidated to indurated clays and shales, all characterised by small pores (2-100 nm) and very low hydraulic conductivity (K < 10-12 m·s-1) or permeability coefficients (k < 10-19 m²). Studies concerning radioactive waste disposal include investigations of both the natural host rock formation and synthetic/engineered backfill material at a depth of a few hundred meters (IAEA, 2003, 2009). Within a geological disposal facility, hydrogen is generated by anaerobic corrosion of metals and through radiolysis of water (Rodwell et al., 1999; Yu and Weetjens, 2009). Additionally, methane and carbon dioxide are generated by microbial degradation of organic wastes (Rodwell et al., 1999; Ortiz et al., 2002; Johnson, 2006; Yu and Weetjens, 2009). The focus of carbon capture and storage (CCS) studies is on the analysis of the long-term sealing efficiency of lithologies above depleted reservoirs or saline aquifers, typically at larger depths (hundreds to thousands of meters). During the last decade, several studies were published on the sealing integrity of clay-rocks to carbon dioxide (Hildenbrand et al., 2004; Li et al., 2005; Hangx et al., 2009; Harrington et al., 2009; Skurtveit et al., 2012; Amann-Hildenbrand et al., 2013). In the context of petroleum system analysis, a significant volume of research has been undertaken regarding gas/oil expulsion mechanisms from sources rocks during burial history (Tissot & Pellet, 1971; Appold & Nunn, 2002), secondary migration (Luo et al., 2008) and the capillary sealing capacity of caprocks overlying natural gas accumulations (Berg, 1975; Schowalter, 1979; Krooss, 1992; Schlömer and Kross, 2004; Li et al., 2005; Berne et al., 2010). Recently, more attention has been paid to investigations of the transport efficiency of shales in the context of oil/gas shale production (Bustin et al., 2008; Eseme et al., 2012; Amann-Hildenbrand et al., 2012; Ghanizadeh et al., 2013, 2014). Analysis of the migration mechanisms within partly unlithified strata becomes important when explaining the 3 origin of overpressure zones, sub-seafloor gas domes and gas seepages (Hovland & Judd, 1988; Boudreau, 2012). The conduction of experiments and data evaluation/interpretation requires a profound process understanding and a high level of experience. The acquisition and preparation of adequate samples for laboratory experiments usually constitutes a major challenge and may have serious impact on the representativeness of the experimental results. Information on the success/failure rate of the sample preparation procedure should therefore be provided. Sample specimens “surviving” this procedure are subjected to various experimental protocols to derive information on their gas transport properties. The present overview first presents the theoretical background of gas diffusion and advective flow, each followed by a literature review (sections 2 and 3). Different experimental methods are described in sections 4.1 and 4.2. Details are provided on selected experiments performed at the Belgian Nuclear Research Centre (SCK-CEN, Belgium), Ecole Centrale de Lille (France), British Geological Survey (UK), and at RWTH-Aachen University (Germany) (section 4.3). Experimental data are discussed with respect to different petrophysical parameters outlined above: i) gas diffusion, ii) evolution of gas breakthrough, iii) dilation-controlled flow, and iv) effective gas permeability after breakthrough. These experiments were conducted under different pressure and temperature conditions, depending on sample type, burial depth and research focus (e.g. radioactive waste disposal, natural gas exploration, or carbon dioxide storage). The interpretation of the experimental results can be difficult and sometimes a clear discrimination between different mechanisms (and the controlling parameters) is not possible. This holds, for instance, for gas breakthrough experiments where the observed transport can be interpreted as intermittent, continuous, capillary- or dilation-controlled flow. Also, low gas flow rates through samples on the length-scale of centimetres can be equally explained by effective two-phase flow or diffusion of dissolved gas

    Modeling water absorption in concrete and mortar with distributed damage

    Get PDF
    The deterioration rate of concrete structures is directly influenced by the rate of moisture ingress. Modeling moisture ingress in concrete is therefore essential for quantitative estimation of the service life of concrete structures. While models for saturated moisture transport are commonly used, concrete, during its service life, is rarely saturated and some degree of damage is often present. In this work, we investigate whether classical isothermal unsaturated moisture transport can be used to simulate moisture ingress in damaged mortar and concrete and we compare the results of numerical simulations with experimental measurements of water sorption. The effect of hysteresis of moisture retention is also considered in the numerical simulations. The results indicate that the unsaturated moisture transport models well simulate early stages of moisture ingress at all damage levels, where capillary suction is the prominent mechanism. At later stages of moisture transport, where air diffusion and dissolution have a more significant contribution, simulations that consider moisture hysteresis compare most favorably with experimental results

    Quantitative electrical imaging of three-dimensional moisture flow in cement-based materials

    Get PDF
    The presence of moisture significantly affects the mechanical, hydraulic, chemical, electrical, and thermal properties of cement-based and other porous materials, and therefore, methods for detecting and quantifying the moisture ingress in these materials are needed. Recent research studies have shown that the ingress of moisture in porous materials can be qualitatively imaged with Electrical Impedance Tomography (EIT) – an imaging modality which uses electrical measurements from object’s surface to reconstruct the electrical conductivity distribution inside the object. The aim of this study is to investigate whether EIT could image the three-dimensional volumetric moisture content within cement-based materials quantitatively. For this aim, we apply the so-called absolute imaging scheme to the EIT image reconstruction, and use an experimentally developed model for converting the electrical conductivity distribution to volumetric moisture content. The results of the experimental studies support the feasibility of EIT for quantitative imaging of three-dimensional moisture flows in cement-based materials

    Modélisation du ruissellement sur surfaces rugueuses

    No full text
    Dans l'étude du ruissellement et de l'érosion à l'échelle des bassins versants, la résistance hydraulique à l'écoulement d'une surface est évaluée par l'intermédiaire d'un coefficient de frottement. Nous avons à notre disposition de nombreuses expressions de ces coefficients issues de tout aussi nombreuses études expérimentales ou théoriques. Cependant, la plupart de ces coefficients ont été établis sous l'hypothèse implicite de micro rugosité. C'est-à-dire que la lame d'eau est considérée suffisamment importante pour que l'influence des aspérités de la surface sur l'écoulement se borne à leur effet sur la friction. La diversité des tailles des rugosités sur les surfaces naturelles, fait qu'une telle hypothèse est rarement vérifiée. Dans ce travail, nous proposons de considérer une séquence de réseaux hydrauliques fonctions du degré d'inondation de la surface. En nous appuyant sur ces réseaux, nous présentons des modèles hydrauliques afin de déterminer le coefficient de frottement de la surface en fonction du taux d'inondation. Les modélisateurs ayant besoin d'associer un coefficient de frottement à un type de surface, nous avons voulu généraliser nos résultats en appliquant notre démarche à des surfaces aléatoires de mêmes caractéristiques statistiques que la surface originale. Ce faisant, nous avons mis en évidence l'influence de la répartition spatiale des rugosités. Si nous n'avons pas pu valider expérimentalement notre modèle numérique en raison du peu de résultats pour les faibles taux d'inondation, nous avons mis en évidence que la transition entre les régimes d'inondation partielle et marginale se traduit par une brusque augmentation de la croissance des débits.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    A Numerical Approach for Non-Linear Moisture Flow in Porous Materials with Account to Sorption Hysteresis

    No full text
    A numerical approach for moisture transport in porous materials like concrete is presented. The model considers mass balance equations for the vapour phase and the water phase in the material together with constitutive equations for the mass flows and for the exchange of mass between the two phases. History-dependent sorption behaviour is introduced by considering scanning curves between the bounding desorption and absorption curves. The method, therefore, makes it possible to calculate equilibrium water contents for arbitrary relative humidity variations at every material point considered. The scanning curves for different wetting and drying conditions are constructed by using third degree polynomial expressions. The three coefficients describing the scanning curves is determined for each wetting and drying case by assuming a relation between the slope of boundary sorption curve and the scanning curve at the point where the moisture response enters the scanning domain. Furthermore, assuming that the slope of the scanning curve is the same as the boundary curve at the junction point, that is, at the point where the scanning curve hits the boundary curve once leaving the scanning domain, a complete cyclic behaviour can be considered. A finite element approach is described, which is capable of solving the non-linear coupled equation system. The numerical calculation is based on a Taylor expansion of the residual of the stated problem together with the establishment of a Newton-Raphson equilibrium iteration scheme within the time steps. Examples are presented illustrating the performance and potential of the model. Two different types of measurements on moisture content profiles in concrete are used to verify the relevance of the novel proposed model for moisture transport and sorption. It is shown that a good match between experimental results and model predictions can be obtained by fitting the included material constants and parameters
    corecore