2,315 research outputs found

    Methodological bias in cluster randomised trials

    Get PDF
    Background: Cluster randomised trials can be susceptible to a range of methodological problems. These problems are not commonly recognised by many researchers. In this paper we discuss the issues that can lead to bias in cluster trials. Methods: We used a sample of cluster randomised trials from a recent review and from a systematic review of hip protectors. We compared the mean age of participants between intervention groups in a sample of 'good' cluster trials with a sample of potentially biased trials. We also compared the effect sizes, in a funnel plot, between hip protector trials that used individual randomisation compared with those that used cluster randomisation. Results: There is a tendency for cluster trials, with evidence methodological biases, to also show an age imbalance between treatment groups. In a funnel plot we show that all cluster trials show a large positive effect of hip protectors whilst individually randomised trials show a range of positive and negative effects, suggesting that cluster trials may be producing a biased estimate of effect. Conclusion: Methodological biases in the design and execution of cluster randomised trials is frequent. Some of these biases associated with the use of cluster designs can be avoided through careful attention to the design of cluster trials. Firstly, if possible, individual allocation should be used. Secondly, if cluster allocation is required, then ideally participants should be identified before random allocation of the clusters. Third, if prior identification is not possible, then an independent recruiter should be used to recruit participants

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    JLab Measurements of the 3He Form Factors at Large Momentum Transfers

    Get PDF
    The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Cytochrome P450 1 genes in birds : evolutionary relationships and transcription profiles in chicken and Japanese quail embryos

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28257, doi:10.1371/journal.pone.0028257.Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.Funding to MEJ and BB was from the Carl Tryggers Stiftelse and The Swedish Research Council Formas. Funding for BRW and JJS was from the United States National Institutes of Health (National Institute of Environmental Health Sciences), grants R01ES015912 and P42ES007381 to JJS

    Demographic, risk behaviour and personal network variables associated with prevalent hepatitis C, hepatitis B, and HIV infection in injection drug users in Winnipeg, Canada

    Get PDF
    BACKGROUND: Previous studies have used social network variables to improve our understanding of HIV transmission. Similar analytic approaches have not been undertaken for hepatitis C (HCV) or B (HBV), nor used to conduct comparative studies on these pathogens within a single setting. METHODS: A cross-sectional survey consisting of a questionnaire and blood sample was conducted on injection drug users in Winnipeg between December 2003 and September 2004. Logistic regression analyses were used to correlate respondent and personal network data with HCV, HBV and HIV prevalence. RESULTS: At the multivariate level, pathogen prevalence was correlated with both respondent and IDU risk network variables. Pathogen transmission was associated with several distinct types of high-risk networks formed around specific venues (shooting galleries, hotels) or within users who are linked by their drug use preferences. Smaller, isolated pockets of IDUs also appear to exist within the larger population where behavioural patterns pose a lesser risk, unless or until, a given pathogen enters those networks. CONCLUSION: The findings suggest that consideration of both respondent and personal network variables can assist in understanding the transmission patterns of HCV, HBV, and HIV. It is important to assess these effects for multiple pathogens within one setting as the associations identified and the direction of those associations can differ between pathogens

    The Potential for pathogenicity was present in the ancestor of the Ascomycete subphylum Pezizomycotina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies in Ascomycetes have shown that the function of gene families of which the size is considerably larger in extant pathogens than in non-pathogens could be related to pathogenicity traits. However, by only comparing gene inventories in extant species, no insights can be gained into the evolutionary process that gave rise to these larger family sizes in pathogens. Moreover, most studies which consider gene families in extant species only tend to explain observed differences in gene family sizes by gains rather than by losses, hereby largely underestimating the impact of gene loss during genome evolution.</p> <p>Results</p> <p>In our study we used a selection of recently published genomes of Ascomycetes to analyze how gene family gains, duplications and losses have affected the origin of pathogenic traits. By analyzing the evolutionary history of gene families we found that most gene families with an enlarged size in pathogens were present in an ancestor common to both pathogens and non-pathogens. The majority of these families were selectively maintained in pathogenic lineages, but disappeared in non-pathogens. Non-pathogen-specific losses largely outnumbered pathogen-specific losses.</p> <p>Conclusions</p> <p>We conclude that most of the proteins for pathogenicity were already present in the ancestor of the Ascomycete lineages we used in our study. Species that did not develop pathogenicity seemed to have reduced their genetic complexity compared to their ancestors. We further show that expansion of gained or already existing families in a species-specific way is important to fine-tune the specificities of the pathogenic host-fungus interaction.</p
    corecore