198 research outputs found

    A digital lifestyle behaviour change intervention for the prevention of type 2 diabetes: a qualitative study exploring intuitive engagement with real-time glucose and physical activity feedback.

    Get PDF
    Background Mobile health technologies have advanced to now allow monitoring of the acute physiological responses to lifestyle behaviours. Our aim was to explore how people engaged with real-time feedback on their physical activity and glucose levels over several weeks. Methods Semi-structured interviews with 26 participants (61.5% female, 56.6 years) at moderate-to-high risk of developing type 2 diabetes were conducted. Interviews were completed after participants took part in an intervention comprising a flash glucose monitor (Freestyle Libre) and a physical activity monitor (Fitbit Charge 2). Purposive sampling ensured representation of ages, genders and group allocations. Results Inductive thematic analysis revealed how individuals intuitively used, interpreted and acted on feedback from wearable technologies. Six key themes emerged: triggers of engagement with the technologies, links between behaviour and health, lack of confidence, changes to movement behaviours, changes to diet and barriers to lifestyle behaviour change. Conclusions Our findings demonstrate that accessing behavioural and physiological feedback can increase self-awareness of how lifestyle impacts short-term health. Some participants noticed a link between the feedback presented by the two devices and changed their behaviour but many did not. Training and educational support, as well as efforts to optimize how feedback is presented to users, are needed to sustain engagement and behaviour change. Extensions of this work to involve people with diabetes are also warranted to explore whether behavioural and physiological feedback in parallel can encourage better diabetes self-management

    Molecular targets for therapy in systemic sclerosis

    Get PDF
    Despite significant advances have been made in the recent years regarding organ-specific therapies, there is no approved 'disease-modifying' antifibrotic drug for systemic sclerosis (SSc) available to date. Although non-selective immunosuppressive agents are routinely used to treat patients with SSc, large well-controlled studies are lacking for almost all immunosuppressive agents and further evidence is required for long-term beneficial effects of these drugs. Considering these facts about immunosuppressive agents in SSc and also considering the high mortality of SSc, other therapeutic strategies are urgently needed. Recently an important role of the 5-hydroxytryptamine (5-HT: serotonin) pathway in fibrosis was reported. In this review, we discuss the role of 5-HT in fibrosis and therapeutic potential of this molecule. Besides 5-HT, there are a number of promising targets that have been extensively characterized in recent years. For many of these molecular targets, modifiers are readily available for clinical studies, and often these modifiers are used already in clinical use for other diseases. Results from these studies will show, in how far the promising preclinical results for novel antifibrotic strategies can be translated to clinical practice

    Using dissolved H<sub>2</sub>O in rhyolitic glasses to estimate palaeo-ice thickness during a subglacial eruption at Bláhnúkur(Torfajökull, Iceland)

    Get PDF
    The last decade has seen the refinement of a technique for reconstructing palaeo-ice thicknesses based on using the retained H2O and CO2 content in glassy eruptive deposits to infer quenching pressures and therefore ice thicknesses. The method is here applied to Bláhnúkur, a subglacially erupted rhyolitic edifice in Iceland. A decrease in water content from ~0.7 wt.% at the base to ~0.3 wt.% at the top of the edifice suggests that the ice was 400 m thick at the time of the eruption. As Bláhnúkur rises 350 m above the surrounding terrain, this implies that the eruption occurred entirely within ice, which corroborates evidence obtained from earlier lithofacies studies. This paper presents the largest data set (40 samples) so far obtained for the retained volatile contents of deposits from a subglacial eruption. An important consequence is that it enables subtle but significant variations in water content to become evident. In particular, there are anomalous samples which are either water-rich (up to 1 wt.%) or water-poor (~0.2 wt.%), with the former being interpreted as forming intrusively within hyaloclastite and the latter representing batches of magma that were volatile-poor prior to eruption. The large data set also provides further insights into the strengths and weaknesses of using volatiles to infer palaeo-ice thicknesses and highlights many of the uncertainties involved. By using examples from Bláhnúkur, the quantitative use of this technique is evaluated. However, the relative pressure conditions which have shed light on Bláhnúkur’s eruption mechanisms and syn-eruptive glacier response show that, despite uncertainties in absolute values, the volatile approach can provide useful insight into the mechanisms of subglacial rhyolitic eruptions, which have never been observed

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    A study to explore if dentists’ anxiety affects their clinical decision-making

    Get PDF
    Aims To develop a measure of dentists’ anxiety in clinical situations; to establish if dentists’ anxiety in clinical situations affected their self-reported clinical decision-making; to establish if occupational stress, as demonstrated by burnout, is associated with anxiety in clinical situations and clinical decision-making; and to explore the relationship between decision-making style and the clinical decisions which are influenced by anxiety. Design Cross-sectional study. Setting Primary Dental Care. Subjects and methods A questionnaire battery [Maslach Burnout Inventory, measuring burnout; Melbourne Decision Making Questionnaire, measuring decision-making style; Dealing with Uncertainty Questionnaire (DUQ), measuring coping with diagnostic uncertainty; and a newly designed Dentists’ Anxieties in Clinical Situations Scale, measuring dentists’ anxiety (DACSS-R) and change of treatment (DACSS-C)] was distributed to dentists practicing in Nottinghamshire and Lincolnshire. Demographic data were collected and dentists gave examples of anxiety-provoking situations and their responses to them. Main outcome measure Respondents’ self-reported anxiety in various clinical situations on a 11-point Likert Scale (DACSS-R) and self-reported changes in clinical procedures (Yes/No; DACSS-C). The DACSS was validated using multiple t-tests and a principal component analysis. Differences in DACSS-R ratings and burnout, decision-making and dealing with uncertainty were explored using Pearson correlations and multiple regression analysis. Qualitative data was subject to a thematic analysis. Results The DACSS-R revealed a four-factor structure and had high internal reliability (Cronbach’s α = 0.94). Those with higher DACSS-R scores of anxiety were more likely to report changes in clinical procedures (DACSS-C scores). DACSS-R scores were associated with decision-making self-esteem and style as measured by the MDMQ and all burnout subscales, though not with scores on the DUQ scale. Conclusion Dentists’ anxiety in clinical situations does affect the way that dentists work clinically, as assessed using the newly designed and validated DACSS. This anxiety is associated with measures of burnout and decision-making style with implications for training packages for dentists

    Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    Get PDF
    BACKGROUND: Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. CONCLUSION/SIGNIFICANCE: The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding

    Hysteresis in Pressure-Driven DNA Denaturation

    Get PDF
    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
    corecore