1,389 research outputs found
Women recovering from social rejection: The effect of the person and the situation on a hormonal mechanism of affiliation
Rejection can motivate either affiliation or withdrawal. In order to study how personality and situational variables influence whether women will be motivated to affiliate versus withdraw, we manipulate social feedback (rejection vs. acceptance) and opportunity for face-to-face interaction (blocked vs. face-to-face) and measure the individual difference variables rejection sensitivity and social anxiety. We test how these variables affect endogenous progesterone and cortisol concentrations, which are presumed to signal motivational responses to rejection. We find that three-way interactions involving social feedback, opportunity for face-to-face interactions, and either social anxiety or rejection sensitivity significantly predict progesterone change, but not cortisol change. Both interactions are driven by sharp progesterone decreases for women high in social anxiety/rejection sensitivity who have been rejected and who have no opportunity to reaffiliate in a face-to-face interaction. This progesterone change may be a physiological marker of motivation for social avoidance following rejection for women who cannot reaffiliate and who are particularly socially anxious or sensitive to rejection
Role of Self-Heating and Polarization in AlGaN/GaN Based Heterostructures
The interplay of self-heating and polarization affecting resistance is studied in AlGaN/GaN Transmission Line Model (TLM) heterostructures with a scaled source-to-drain distance. The study is based on meticulously calibrated TCAD simulations against I-V experimental data using an electrothermal model. The electro-thermal simulations show hot-spots (with peak temperature in a range of 566 K - 373 K) at the edge of the drain contact due to a large electric field. The electrical stress on Ohmic contacts reduces the total polarization, leading to the inverse/converse piezoelectric effect. This inverse effect decreases the polarization by 7 %, 10 %, and 17 % during a scaling of the source-to-drain distance in the 12 μ m, μ8 m and 4μ m TLM heterostructures, respectively, when compared to the largest 18μ m heterostructure
Strain-Reduction Induced Rise in Channel Temperature at Ohmic Contacts of GaN HEMTs
Operating temperature distributions in AlGaN/GaN gateless and gated devices are characterized and analyzed using the InfraScope temperature mapping system. For the first time, a substantial rise of channel temperature at the inner ends of ohmic contacts has been observed. Synchrotron radiation based high-resolution X-ray diffraction technique combined with drift -diffusion simulations show that strain reduction at the vicinity of ohmic contacts increases electric fi eld at these locations, resulting in the rise of lattice temperature. The thermal coupling of a high conductive tensile region at the contacts to a low conductive channel region is an origin of the temperature rise observed in both short- and long-channel gateless devices
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate
An optimized fabrication process of ohmic contacts is proposed to reduce the source/drain access resistance (RC) and enhance DC/RF performance of AlGaN/GaN HEMTs with a high Al concentration. We show that source/drain RC can be considerably lowered by (i) optimally etching into the barrier layer using Ar+ ion beam, and by (ii) forming recessed contact metallization using an optimized Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) multilayers. We found that a low RC of ∼0.3 Ω.mm can be achieved by etching closer to the 2-Dimensional Electron Gas (2DEG) at an optimum etching depth, 75% of the barrier thickness, followed by a rapid thermal annealing at 850°C. This is due to the very small distance between the alloy and the 2DEG (higher electric field) as shown by 2D drift-diffusion simulations combined with Transmission Line Model (TLM) extractions
An ongoing case-control study to evaluate the NHS Bowel Cancer Screening Programme
© 2014 Massat et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
A Source and Drain Transient Currents Technique for Trap Characterisation in AlGaN/GaN HEMTs
The source/drain and gate induced charge trapping within an AlGaN/GaN high electron mobility transistor is studied, under normal device operation, by excluding self-heating effects, for the first time. Through direct measurement of current transients of both source and drain terminals, a characterisation technique has been developed to: (i) analyse the transient current degradations from μs to seconds, and (ii) evaluate the drain and gate induced charge trapping mechanisms. Two degradation mechanisms of current are observed: bulk trapping at a short time (1ms). The bulk charge trapping is found to occur during both ON and OFF states of the device when VDS>0V; where its trapping time constant is independent of bias conditions. In addition, the time constant of the slower current degradation is found to be mainly dependent on surface trapping and redistribution, not by the second heat transient
Extraordinary virtual multidisciplinary team meetings: a novel forum for coordinated care of patients with complex conditions within a secondary care setting
Multidisciplinary team (MDT) meetings are increasingly regarded as best practice for the successful management of chronic disease. However, for patients with undiagnosed illnesses, multiple interacting comorbidities or other complex needs that fall outside the remit of disease-specific MDTs or the scope of expertise of individual clinicians, there is often no suitable forum at which to discuss their care to develop a coordinated plan for management. We developed and piloted a new forum for interspecialty discussion and collaboration, an extraordinary virtual MDT, to enable clinicians to arrange an urgent meeting of all involved parties in response to challenging clinical scenarios. Here, we share our experience of implementing this innovation and suggest how this novel forum for coordinated care could be further developed to improve the integration, timeliness and quality of healthcare delivery for patients with complex needs
First Steps towards Underdominant Genetic Transformation of Insect Populations
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Figure
Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals
This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 04/04/2015, available online: https://doi.org/10.1007/s00421-015-3164-2
The accepted version of the publication may differ from the final published version.© 2015, Springer-Verlag Berlin Heidelberg. Purpose: Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. Methods: Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). Results: In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027–0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043–0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. Conclusion: AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.Published versio
- …