349 research outputs found
Relative Worst-Order Analysis: A Survey
Relative worst-order analysis is a technique for assessing the relative
quality of online algorithms. We survey the most important results obtained
with this technique and compare it with other quality measures.Comment: 20 page
Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models
Background: Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. Results: Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. Conclusions: Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies
Matrilineal behavioral and physiological changes following the death of a non-alpha matriarch in rhesus macaque
In many species, the loss of alpha matriarchs is associated with a number of negative outcomes such as troop fission, eviction, wounding, and reduced vitality. However, whether
the dramatic consequences of their loss are due to their role as an old experienced figure or
to their alpha status remains unclear. In a retrospective study, we tested that in a semi-free
ranging colony of rhesus macaques (Macaca mulatta), the removal of a non-alpha matriarch, who had a large set of kin, led to changes in behavior and physiological stress within
her matriline. Following her removal, her matriline increased in aggression, vigilance, and
social grooming. Additionally, hierarchical stability, measured by levels of rank changes,
decreased within her matriline, and levels of intense aggression by high-ranking animals
were more frequent, as well as matrilineal wounding. Although ordinal rank was positively
associated with higher chronic hair cortisol concentrations (HCCs) in the months before the
matriarch’s removal, following her removal, only those who experienced large increases in
rank within her matriline displayed higher HCCs. Changes in matrilineal stability, aggression, behavior, and HCCs within the other two matrilines in the troop were not evident,
although caution is needed due to the small sample sizes. We conclude that the removal of
the non-alpha matriarch led to matrilineal instability, characterized by higher levels of
aggression and subsequent vigilance, rank changes, physiological stress, and grooming.
We suggest that non-alpha matriarchs with a large number of kin and social support can be
integral to the stability of matrilines.Division of Intramural Research, National Institute of Child Health and Human Development, 1ZIAHD001107- 3
The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient
Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes
This is the final version. Available on open access from the Public Library of Science via the DOI in this recordData Availability: All relevant data are within the paper's Supporting Information files. Numerical values for Fig 4 can be found at https://doi.org/10.6084/m9.figshare.22086647One of the deepest branches in the tree of life separates the Archaea from the Bacteria. These prokaryotic groups have distinct cellular systems including fundamentally different phospholipid membrane bilayers. This dichotomy has been termed the lipid divide and possibly bestows different biophysical and biochemical characteristics on each cell type. Classic experiments suggest that bacterial membranes (formed from lipids extracted from Escherichia coli, for example) show permeability to key metabolites comparable to archaeal membranes (formed from lipids extracted from Halobacterium salinarum), yet systematic analyses based on direct measurements of membrane permeability are absent. Here, we develop a new approach for assessing the membrane permeability of approximately 10 μm unilamellar vesicles, consisting of an aqueous medium enclosed by a single lipid bilayer. Comparing the permeability of 18 metabolites demonstrates that diether glycerol-1-phosphate lipids with methyl branches, often the most abundant membrane lipids of sampled archaea, are permeable to a wide range of compounds useful for core metabolic networks, including amino acids, sugars, and nucleobases. Permeability is significantly lower in diester glycerol-3-phosphate lipids without methyl branches, the common building block of bacterial membranes. To identify the membrane characteristics that determine permeability, we use this experimental platform to test a variety of lipid forms bearing a diversity of intermediate characteristics. We found that increased membrane permeability is dependent on both the methyl branches on the lipid tails and the ether bond between the tails and the head group, both of which are present on the archaeal phospholipids. These permeability differences must have had profound effects on the cell physiology and proteome evolution of early prokaryotic forms. To explore this further, we compare the abundance and distribution of transmembrane transporter-encoding protein families present on genomes sampled from across the prokaryotic tree of life. These data demonstrate that archaea tend to have a reduced repertoire of transporter gene families, consistent with increased membrane permeation. These results demonstrate that the lipid divide demarcates a clear difference in permeability function with implications for understanding some of the earliest transitions in cell origins and evolution.Gordon and Betty and Gordon Moore FoundationBiotechnology and Biological Sciences Research Council (BBSRC)European Union Horizon 2020Volkswagen FoundationMerton College, University of Oxford (NATI
Identification of imaging selection patterns in acute ischemic stroke patients and the influence on treatment and clinical trial enrolment decision making
For the STroke Imaging Research (STIR) and VISTA-Imaging Investigators The purpose of this study was to collect precise information on the typical imaging decisions given specific clinical acute stroke scenarios. Stroke centers worldwide were surveyed regarding typical imaging used to work up representative acute stroke patients, make treatment decisions, and willingness to enroll in clinical trials.
STroke Imaging Research and Virtual International Stroke Trials Archive-Imaging circulated an online survey of clinical case vignettes through its website, the websites of national professional societies from multiple countries as well as through email distribution lists from STroke Imaging Research and participating societies. Survey responders were asked to select the typical imaging work-up for each clinical vignette presented. Actual images were not presented to the survey responders. Instead, the survey then displayed several types of imaging findings offered by the imaging strategy, and the responders selected the appropriate therapy and whether to enroll into a clinical trial considering time from onset, clinical presentation, and imaging findings. A follow-up survey focusing on 6 h from onset was conducted after the release of the positive endovascular trials.
We received 548 responses from 35 countries including 282 individual centers; 78% of the centers originating from Australia, Brazil, France, Germany, Spain, United Kingdom, and United States. The specific onset windows presented influenced the type of imaging work-up selected more than the clinical scenario. Magnetic Resonance Imaging usage (27-28%) was substantial, in particular for wake-up stroke. Following the release of the positive trials, selection of perfusion imaging significantly increased for imaging strategy.
Usage of vascular or perfusion imaging by Computed Tomography or Magnetic Resonance Imaging beyond just parenchymal imaging was the primary work-up (62-87%) across all clinical vignettes and time windows. Perfusion imaging with Computed Tomography or Magnetic Resonance Imaging was associated with increased probability of enrollment into clinical trials for 0-3 h. Following the release of the positive endovascular trials, selection of endovascular only treatment for 6 h increased across all clinical vignettes
Anthropometric, biochemical and clinical assessment of malnutrition in Malaysian patients with advanced cirrhosis
<p>Abstract</p> <p>Background</p> <p>There is limited data on the nutritional status of Asian patients with various aetiologies of cirrhosis. This study aimed to determine the prevalence of malnutrition and to compare nutritional differences between various aetiologies.</p> <p>Methodology</p> <p>A cross-sectional study of adult patients with decompensated cirrhosis was conducted. Nutritional status was assessed using standard anthropometry, serum visceral proteins and subjective global assessment (SGA).</p> <p>Results</p> <p>Thirty six patients (mean age 59.8 ± 12.8 years; 66.7% males; 41.6% viral hepatitis; Child-Pugh C 55.6%) with decompensated cirrhosis were recruited. Malnutrition was prevalent in 18 (50%) patients and the mean caloric intake was low at 15.2 kcal/kg/day. SGA grade C, as compared to SGA grade B, demonstrated significantly lower anthropometric values in males (BMI 18.1 ± 1.6 vs 26.3 ± 3.5 kg/m2, p < 0.0001; MAMC 19.4 ± 1.5 vs 24.5 ± 3.6 cm, p = 0.002) and females (BMI 19.4 ± 2.7 vs 28.9 ± 4.3, p = 0.001; MAMC 18.0 ± 0.9 vs 28.1 ± 3.6, p < 0.0001), but not with visceral proteins. The SGA demonstrated a trend towards more malnutrition in Child-Pugh C compared to Child-Pugh B liver cirrhosis (40% grade C vs 25% grade C, p = 0.48). Alcoholic cirrhosis had a higher proportion of SGA grade C (41.7%) compared to viral (26.7%) and cryptogenic (28.6%) cirrhosis, but this was not statistically significant.</p> <p>Conclusion</p> <p>Significant malnutrition in Malaysian patients with advanced cirrhosis is common. Alcoholic cirrhosis may have more malnutrition compared to other aetiologies of cirrhosis.</p
Characterization and simulation of cDNA microarray spots using a novel mathematical model
<p>Abstract</p> <p>Background</p> <p>The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images.</p> <p>Results</p> <p>We developed a governing equation of cDNA deposition during evaporation of a drop in the microarray spotting process. The governing equation included four parameters: the surface site density on the support, the extrapolated equilibrium constant for the binding of cDNA molecules with surface sites on glass slides, the macromolecular interaction factor, and the volume constant of a drop of cDNA solution. We simulated cDNA deposition from the single model equation by varying the value of the parameters. The morphology of the resulting cDNA deposit can be classified into three types: a doughnut shape, a peak shape, and a volcano shape. The spot morphology can be changed into a flat shape by varying the experimental conditions while considering the parameters of the governing equation of cDNA deposition. The four parameters were estimated by fitting the governing equation to the real microarray images. With the results of the simulation and the parameter estimation, the phenomenon of the formation of cDNA deposits in each type was investigated.</p> <p>Conclusion</p> <p>This study explains how various spot shapes can exist and suggests which parameters are to be adjusted for obtaining a good spot. This system is able to explore the cDNA microarray spotting process in a predictable, manageable and descriptive manner. We hope it can provide a way to predict the incidents that can occur during a real cDNA microarray experiment, and produce useful data for several research applications involving cDNA microarrays.</p
- …
