152 research outputs found

    Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan

    Get PDF
    The 1999 Chi-Chi earthquake, M_w = 7.6, broke a major thrust fault along the western foothills of the Central Range of Taiwan. We have measured the horizontal coseismic displacement field by correlating optical satellite images acquired before and after the earthquake. These data reveal the fault trace and a clockwise rotation of surface displacements toward the north with much larger displacements and strain in the hanging wall. At the surface, coseismic slip increases from 5–6 m near the epicenter to 10–11 m to the north. In the epicentral area, we observe a left-lateral strike-slip zone trending N125°E, and farther north, a fault zone trending N-S with a right-lateral component. The data were modeled using elastic dislocations. The fault geometry consists of a shallow 20–35° east dipping ramp, which soles out into a low dipping décollement at a depth of ~6 to 8 km. Surface displacements can be satisfactorily modeled, assuming a constant slip azimuth on the main fault plane, close to the azimuth of plate convergence (N305°E ± 5°). At depth, slips along the fault plane evolve from 5–6 m in the south to 7 to 12 m to the north. Our model suggests that the deeper portion of the fault was not activated during the Chi-Chi earthquake. This zone of slip deficit must break during large earthquakes or be activated during transient episodes of aseismic slip. On the basis of these observations, the western front of the central Taiwan should produce a M = 7 to 7.5 event, about every 150 to 250 years

    On the small-x evolution of the color quadrupole and the Weizsäcker–Williams gluon distribution

    Get PDF
    AbstractColor quadrupoles have been found to be important in the proper description of observables sensitive to the small-x regime in nuclei as well as in the operator definition of the Weizsäcker–Williams gluon distribution. In this Letter, we derive the small-x evolution equation of the quadrupole and the Weizsäcker–Williams gluon distribution without taking the large Nc limit and study the properties of the equation in both dilute and saturation regime. We find that the quadrupole evolution follows the BFKL evolution in the dilute regime and then saturates in the dense region due to nonlinear terms. This leads us to conclude that the Weizsäcker–Williams gluon distribution should obey the same geometrical behavior as the dipole gluon distribution as found in the inclusive DIS measurement

    Kinematics of fault-related folding derived from a sandbox experiment

    Get PDF
    We analyze the kinematics of fault tip folding at the front of a fold-and-thrust wedge using a sandbox experiment. The analog model consists of sand layers intercalated with low-friction glass bead layers, deposited in a glass-sided experimental device and with a total thickness h = 4.8 cm. A computerized mobile backstop induces progressive horizontal shortening of the sand layers and therefore thrust fault propagation. Active deformation at the tip of the forward propagating basal décollement is monitored along the cross section with a high-resolution CCD camera, and the displacement field between pairs of images is measured from the optical flow technique. In the early stage, when cumulative shortening is less than about h/10, slip along the décollement tapers gradually to zero and the displacement gradient is absorbed by distributed deformation of the overlying medium. In this stage of detachment tip folding, horizontal displacements decrease linearly with distance toward the foreland. Vertical displacements reflect a nearly symmetrical mode of folding, with displacements varying linearly between relatively well defined axial surfaces. When the cumulative slip on the décollement exceeds about h/10, deformation tends to localize on a few discrete shear bands at the front of the system, until shortening exceeds h/8 and deformation gets fully localized on a single emergent frontal ramp. The fault geometry subsequently evolves to a sigmoid shape and the hanging wall deforms by simple shear as it overthrusts the flat ramp system. As long as strain localization is not fully established, the sand layers experience a combination of thickening and horizontal shortening, which induces gradual limb rotation. The observed kinematics can be reduced to simple analytical expressions that can be used to restore fault tip folds, relate finite deformation to incremental folding, and derive shortening rates from deformed geomorphic markers or growth strata

    Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran)

    No full text
    International audienceNorthwest Iran is characterized by a high level of historical and instrumental seismicity related to the ongoing convergence between the Arabian and Eurasian plates. In this region, the main right-lateral strike-slip fault known as the North Tabriz fault (NTF) forms the central portion of a large crustal fault system called the Tabriz fault system (TFS). The NTF is a major seismic source along which at least three strong and destructive earthquakes have occurred since 858 AD. The two most recent destructive seismic events occurred in 1721 AD and 1780 AD, rupturing the SE and NW fault segments, respectively. This paper reports paleoseismological and quantitative geomorphologic investigations on the SE segment of the NTF, between the cities of Bostanabad and Tabriz. These observations help to improve our understanding of the seismic hazard for Tabriz city and its surrounding areas. Our field investigations revealed evidence of successive faulting events since the Late Quaternary. Paleoseismic investigations indicate that since 33.5 kyr, the SE segment of the NTF has experienced at least three major (M>7.5) seismic events, including the 1721 AD earthquake (M=7.6–7.7). Along the NW segment of the fault, however, our results suggest that the amount of strong (M~7.5) seismic events during the same period is significantly greater than along the SE segment. One possible explanation of such a difference in seismic activity is that the Late Quaternary-Holocene coseismic slip rate is decreasing along the NTF from the northwest to the southeast. This explanation contradicts the former hypothesis of a constant slip rate along the whole length of the NTF. In addition, more distributed deformation along several parallel fault branches, in a wider fault zone of the SE segment of the NTF may be considered as additional evidence for the estimation of lower rate of deformation along the fault segment. Such a slip distribution pattern can explain the existence of smaller (~300 m) Pliocene-Quaternary cumulative dextral offsets along the SE fault segment than the measured cumulative offsets along the NW segment (~800 m) of the NTF

    Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)

    Get PDF
    The Tian Shan Mountains constitute central Asia's longest and highest mountain range. Understanding their Cenozoic uplift history thus bears on mountain building processes in general, and on how deformation has occurred under the influence of the India-Asia collision in particular. In order to help decipher the uplift history of the Tian Shan, we collected 970 samples for magnetostratigraphic analysis along a 4571-m-thick section at the Jingou River (Xinjiang Province, China). Stepwise alternating field and thermal demagnetization isolate a linear magnetization component that is interpreted as primary. From this component, a magnetostratigraphic column composed of 67 polarity chrons are correlated with the reference geomagnetic polarity timescale between ∼1 Ma and ∼23.6 Ma, with some uncertainty below ∼21 Ma. This correlation places precise temporal control on the Neogene stratigraphy of the southern Junggar Basin and provides evidence for two significant stepwise increases in sediment accumulation rate at ∼16–15 Ma and ∼11–10 Ma. Rock magnetic parameters also undergo important changes at ∼16–15 Ma and ∼11–10 Ma that correlate with changes in sedimentary depositional environments. Together with previous work, we conclude that growth history of the modern Tian Shan Mountains includes two pulses of uplift and erosion at ∼16–15 Ma and ∼11–10 Ma. Middle to upper Tertiary rocks around the Tian Shan record very young (<∼5 Ma) counterclockwise paleomagnetic rotations, on the order of 15° to 20°, which are interpreted as because of strain partitioning with a component of sinistral shear that localized rotations in the piedmont

    The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.</p> <p>Results</p> <p>Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus <it>Trichoderma reesei </it>(anamorph of <it>Hypocrea jecorina</it>) by profiling transcription in a wild-type and a delta-<it>cre1 </it>mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.</p> <p>Conclusions</p> <p>Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.</p

    Thermal Stability of the Human Immunodeficiency Virus Type 1 (HIV-1) Receptors, CD4 and CXCR4, Reconstituted in Proteoliposomes

    Get PDF
    BACKGROUND: The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS: We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a)) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (T(i)) of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a) of 278 kJ/mol (66.5 kcal/mol), and a T(i) of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE: Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors

    Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer.

    Get PDF
    BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures
    corecore