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Color quadrupoles have been found to be important in the proper description of observables sensitive 
to the small-x regime in nuclei as well as in the operator definition of the Weizsäcker–Williams 
gluon distribution. In this Letter, we derive the small-x evolution equation of the quadrupole and the 
Weizsäcker–Williams gluon distribution without taking the large Nc limit and study the properties of 
the equation in both dilute and saturation regime. We find that the quadrupole evolution follows the 
BFKL evolution in the dilute regime and then saturates in the dense region due to nonlinear terms. This 
leads us to conclude that the Weizsäcker–Williams gluon distribution should obey the same geometrical 
behavior as the dipole gluon distribution as found in the inclusive DIS measurement.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recent studies of two-particle production processes [1–5] 
where a dilute probe scatters from a dense target have shown 
that in order to understand saturation phenomena and the cor-
responding small-x dynamics it is necessary to go beyond color 
dipoles and compute the appropriate evolution equations for color 
quadrupoles as well. In particular, the measurement of two-particle 
correlations in d + Au collisions [6,7] has attracted a fair amount of
attention due to the observed suppression of the far-side peak as 
the rapidity of the observed particles is increased. So far, the only 
satisfactory explanation for this phenomenon, showing suppres-
sion for forward rapidities and not in the central rapidity region, 
is the calculation presented in [2] which is performed in a Color 
Glass Condensate (CGC) framework. Even though the results of [2] 
are shown to agree with the current data, it has been argued [5,16] 
that the approximation used to implement the small-x evolution 
of the relevant correlators in terms of only color dipoles is not cor-
rect even in the large-Nc limit. Based on the study of two-particle 
production processes in DIS and pA collisions [5,3] it is now be-
lieved that scattering processes involving a dilute probe interacting 
with a dense target can be described in terms of only color dipoles 
and color quadrupoles in the large-Nc limit.

Color quadrupoles have also been shown to be relevant when 
unintegrated gluon distributions are considered in the small-x
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regime. In small-x physics, two different unintegrated gluon distri-
butions [8,9] (also called transverse momentum dependent gluon 
distributions), namely the Weizsäcker–Williams gluon distribution 
xG(1) [10,11] and the dipole gluon distribution xG(2) , have been 
found and widely used in the literature. The Weizsäcker–Williams 
gluon distribution, known as the conventional gluon distribu-
tion, gives the Fock space number density of gluons inside dense 
hadrons in light-cone gauge. The dipole gluon distribution, defined 
via the Fourier transform of the color dipole amplitude, has been 
studied thoroughly since it appears in many physical processes 
[12,13]. This dipole gluon distribution can be probed directly in 
photon-jet correlations measurement in pA collisions. Recently, 
studies [4,5] on the Weizsäcker–Williams gluon distribution indi-
cate that it can be directly measured in DIS dijet production and 
its operator definition is related to quadrupoles instead of nor-
mal color dipoles. Other more complicated dijet processes in pA 
collisions (e.g., qg or gg dijets) involve both of these gluon distri-
butions through convolution in transverse momentum space.

In terms of the operator definitions of the Weizsäcker–Williams 
gluon distribution xG(1) and the dipole gluon distribution xG(2) , 
the evolution of xG(2) appears to be given by the evolution of the 
dipole scattering amplitude which obeys the Balitsky–Kovchegov 
equation [14,15], while xG(1) is governed by the evolution of both 
dipole and quadrupole scattering amplitudes. For more compli-
cated dijet processes in pA collisions [16], one needs to use both 
the dipole and the quadrupole evolution equations since the cross 
sections of those processes involve both gluon distributions and 
their combinations. Knowing both dipole and quadrupole forward 
scattering amplitudes on a target allows one to understand their
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small-x behavior and thus compute physical observables in high
energy scatterings in the large Nc limit. This is necessary to de-
scribe dijet processes in both DIS and pA collisions systematically.

The objective of this Letter is to derive the small-x evolution
equation of the quadrupole and the Weizsäcker–Williams gluon
distribution without taking the large Nc limit, and study their
small-x behavior. As far as the quadrupole amplitude Q is con-
cerned, it seems that qualitatively it is understood quite well. In
the leading twist limit when the density is low, it obeys a BFKL
type equation. When all the sizes of the quadrupole are compa-
rable to the scale at which unitarity sets in, namely �xi ∼ 1

Q s(Y )

(Q s(Y ) is the so-called saturation momentum, which depends
on the rapidity Y , and whose inverse gives the order of magni-
tude of the size above which color-neutral objects are absorbed),
the quadrupole amplitude evolves towards the stable fixed point
Q = 0 and the corresponding Weizsäcker–Williams gluon distribu-
tion xG(1) starts to saturate.

The rest of the Letter is organized as follows. In Section 2,
we carry out the derivations for the evolution equation of the
quadrupole amplitudes and the Weizsäcker–Williams gluon distri-
bution. We investigate the weak interaction limit of these equa-
tions in Section 3. Section 4 is devoted to the discussion on the
unitarity limit and fixed points of the quadrupole evolution equa-
tion. The summary and further discussions are given in Section 5.

2. The evolution equation of the quadrupole

In general, the JIMWLK evolution [17,18] of an arbitrary opera-
tor is given by

∂〈O〉Y

∂Y
= 1

2

∫
d2u⊥

∫
d2 v⊥

〈
δ

δαa
u⊥

ηab
uv

δ

δαb
v⊥

O
〉

Y
, (1)

with

ηab
uv = 1

π

∫
d2z⊥
(2π)2

K(u⊥, v⊥, z⊥)

× [
1 + Ṽ †

u Ṽ v − Ṽ †
u Ṽ z − Ṽ †

z Ṽ v
]ab

, (2)

where K(u⊥, v⊥, z⊥) = (u⊥−z⊥)·(v⊥−z⊥)

(u⊥−z⊥)2(v⊥−z⊥)2 and the Ṽ represents the

Wilson line in the adjoint representation.
If one sets O = 1

Nc
〈Tr(U (x⊥)U †(y⊥))〉Y with U (x⊥) being the

Wilson line in the fundamental representation, one can easily re-
produce the well-known evolution equation for the dipole ampli-
tude,

∂

∂Y

〈
Tr

[
U (x)U †(y)

]〉
Y

= −αs Nc

2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
{〈

Tr
[
U (x)U †(y)

]〉
Y

− 1

Nc

〈
Tr

[
U (x)U †(z)

]
Tr

[
U (z)U †(y)

]〉
Y

}
. (3)

This is not a closed equation for the dipole amplitude since
the last term involves a correlator of four Wilson lines. Using a
mean field approximation for a large nucleus and in the large-Nc

limit, this correlator can be factorized as a product of two dipole
amplitudes yielding the well-known Balitsky–Kovchegov equation.
The Balitsky–Kovchegov equation has a probabilistic interpretation
in terms of dipole splittings with the probability of one dipole
(x⊥, y⊥) splitting into two new dipoles (x⊥, z⊥) and (z⊥, y⊥) be-

ing Pd→dd = αs Nc
2

d2 z⊥(x⊥−y⊥)2

2 2 .

2π (x⊥−z⊥) (z⊥−y⊥)
Here we would like to derive the evolution equation of
quadrupoles by using the JIMWLK Hamiltonian method without
taking the large Nc limit. By setting O = 1

Nc
〈Tr(U (x1)U †(x′

1)U (x2)×
U †(x′

2))〉Y and using the above Hamiltonian, we get (see the
derivation in Appendix A)

∂

∂Y

〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

= − αs Nc

(2π)2

∫
d2z⊥ K1

(
x1, x′

1, x2, x′
2; z

)

× 〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ A

(
x1, x′

1, x2, x′
2; z

)

× 1

Nc

〈
Tr

[
U †(x′

1

)
U (x2)

]
Tr

[
U †(x′

2

)
U (x1)

]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ B

(
x1, x′

1, x2, x′
2; z

)

× 1

Nc

〈
Tr

[
U (x1)U †(x′

1

)]
Tr

[
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x1; x′

1, x′
2; z

)

× 1

Nc

〈
Tr

[
U (x1)U †(z)

]
Tr

[
U (z)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x′

1; x1, x2; z
)

× 1

Nc

〈
Tr

[
U (z)U †(x′

1

)]
Tr

[
U (x1)U †(z)U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x2; x′

1, x′
2; z

)

× 1

Nc

〈
Tr

[
U (x2)U †(z)

]
Tr

[
U (x1)U †(x′

1

)
U (z)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x′

2; x1, x2; z
)

× 1

Nc

〈
Tr

[
U (z)U †(x′

2

)]
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(z)

]〉
Y , (4)

where

K1
(
x1, x′

1, x2, x′
2; z

)

= (x′
1 − x1)

2

(x′
1 − z)2(z − x1)2

+ (x′
2 − x2)

2

(x′
2 − z)2(z − x2)2

+ (x′
1 − x2)

2

(x′
1 − z)2(z − x2)2

+ (x′
2 − x1)

2

(x′
2 − z)2(z − x1)2

, (5)

A
(
x1, x′

1, x2, x′
2; z

)

= (x′
1 − x′

2)
2

(x′
1 − z)2(z − x′

2)
2

+ (x1 − x2)
2

(x1 − z)2(z − x2)2

− (x′
1 − x2)

2

(x′
1 − z)2(z − x2)2

− (x′
2 − x1)

2

(x′
2 − z)2(z − x1)2

, (6)

B
(
x1, x′

1, x2, x′
2; z

)

= (x′
1 − x′

2)
2

(x′
1 − z)2(z − x′

2)
2

+ (x1 − x2)
2

(x1 − z)2(z − x2)2

− (x′
2 − x2)

2

(x′ − z)2(z − x )2
− (x′

1 − x1)
2

(x′ − z)2(z − x )2
, (7)
2 2 1 1
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K2
(
x1; x′

1, x′
2; z

)

= (x1 − x′
1)

2

(x1 − z)2(z − x′
1)

2
+ (x1 − x′

2)
2

(x1 − z)2(z − x′
2)

2

− (x′
1 − x′

2)
2

(x′
1 − z)2(z − x′

2)
2
. (8)

We note that the kernels satisfy the sum rule

K1 = A + B +
4∑

K2, (9)

where the sum in Eq. (9) goes over the missing coordinate in K2
which in Eq. (8) is x2. All the above coordinate variables are im-
plicitly assumed to be two-dimensional. Eq. (4)1 suffers the same
problem as Eq. (3) in the sense that it is not a closed equation be-
cause the right-hand side includes higher-point correlations. The
way to deal with this difficulty is the same as for the Balitsky–
Kovchegov equation assuming that, for a large nucleus, these cor-
relators can be factored as products of correlators involving only
one trace at a time when the large-Nc limit is taken. The resulting
equation is equivalent to the quadrupole evolution equation found
in Ref. [3] which was derived considering only the leading Nc con-
tributions from the beginning. In other words, the full evolution
equation has no terms which are explicitly suppressed by powers
of 1/Nc and taking the large-Nc limit only has the effect of allow-
ing the aforementioned factorization of the correlators. This was
also the case for the Balitsky–Kovchegov equation [15] as can be
seen from Eq. (3).

Let us also comment on the physical interpretation of those
seven terms on the right-hand side of Eq. (4). The first term stands
for the virtual correction which subtracts probability from the orig-
inal quadrupole. The second and third term represent the splitting
of the quadrupole into two new dipoles while the last four terms
indicate the splitting of the original quadrupole into a quadrupole
and a new dipole. The kernels satisfy the relation Eq. (9) as a result
of conservation of probability.

Now, let us turn our attention to the unintegrated gluon distri-
butions mentioned in the introduction. First consider the dipole
gluon distribution whose operator definition is related to the
dipole amplitude, namely, the two point functions of Wilson lines

1
Nc

〈Tr(U (x⊥)U †(y⊥))〉 as follows

xG(2)(x,k⊥) = q2⊥Nc

2π2αs

∫
d2x⊥

∫
d2 y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)

× 1

Nc

〈
Tr U (x⊥)U †(y⊥)

〉
Y . (10)

Its evolution is therefore provided by the Balitsky–Kovchegov equa-
tion.

The operator definition of the Weizsäcker–Williams gluon dis-
tribution is given by a slightly different operator which can be ob-
tained from the quadrupole correlator. According to Refs. [4,5,19],
the Weizsäcker–Williams gluon distribution can be written as

xG(1)(x,k⊥) = − 2

αs

∫
d2 v

(2π)2

d2 v ′

(2π)2
e−ik⊥·(v−v ′)

× 〈
Tr

[
∂i U (v)

]
U †(v ′)[∂i U

(
v ′)]U †(v)

〉
Y . (11)

1 These equations have also been derived using the JIMWLK formalism by D. Tri-
antafyllopoulos and by J. Jalilian-Marian (private communications).
The evolution equation2 for the correlator 〈Tr[∂i U (v)] ×
U †(v ′)[∂i U (v ′)]U †(v)〉Y can be obtained from Eq. (4) by differenti-
ating with respect to x1 and x2, and then setting x1 = x′

2 = v and
x2 = x′

1 = v ′ . Then the resulting evolution equation becomes

∂

∂Y

〈
Tr

[
∂i U (v)

]
U †(v ′)[∂i U

(
v ′)]U †(v)

〉
Y

= −αs Nc

2π2

∫
d2z⊥

(v − v ′)2

(v − z)2(z − v ′)2

× 〈
Tr

[
∂i U (v)

]
U †(v ′)[∂i U

(
v ′)]U †(v)

〉
Y

− αs Nc

2π2

∫
d2z⊥

1

Nc

(v − v ′)2

(v − z)2(z − v ′)2

×
[

(v − v ′)i

(v − v ′)2
− (v − z)i

(v − z)2

]

× {〈
Tr

[
U (v)U †(v ′)[∂i U

(
v ′)]U †(z)

]
Tr

[
U (z)U †(v)

]〉
Y

− 〈
Tr

[
U (z)U †(v ′)[∂i U

(
v ′)]U †(v)

]
Tr

[
U (v)U †(z)

]〉
Y

}

− αs Nc

2π2

∫
d2z⊥

1

Nc

(v − v ′)2

(v − z)2(z − v ′)2

×
[

(v ′ − v)i

(v ′ − v)2
− (v ′ − z)i

(v ′ − z)2

]

× {〈
Tr

[[
∂i U (v)

]
U †(z)U

(
v ′)U †(v)

]
Tr

[
U (z)U †(v ′)]〉

Y

− 〈
Tr

[[
∂i U (v)

]
U †(v ′)U (z)U †(v)

]
Tr

[
U

(
v ′)U †(z)

]〉
Y

}

− αs Nc

π2

∫
d2z⊥

1

Nc

1

(v − z)2(z − v ′)2

×
[

1 − 2((v − z) · (z − v ′))2

(v − z)2(z − v ′)2

]

× {〈
Tr

[
U

(
v ′)U †(z)

]
Tr

[
U (z)U †(v ′)]〉

Y

+ 〈
Tr

[
U (v)U †(z)

]
Tr

[
U (z)U †(v)

]〉
Y

− 〈
Tr

[
U

(
v ′)U †(v)

]
Tr

[
U (v)U †(v ′)]〉

Y − N2
c

}
. (12)

Among these four terms in Eq. (12), the second and third terms are
quite troublesome since they introduce new correlators involving
three coordinates. The first term can be understood as the virtual
correction as analogous to the first term in the Balitsky–Kovchegov
equation shown in Eq. (3). The last term is in agreement with the
results obtained from the one-loop calculation in Ref. [22]. The cal-
culation in Ref. [22] employs an effective theory which allows one
to probe the Weizsäcker–Williams gluon distribution by using the
current j = − 1

4 F a
μν F a

μν . One can also show that this calculation is
equivalent to our above derivation for Eq. (12), and one can obtain
the first three terms as well if all the graphs are included without
angular average.

In addition, we find that one will inevitably run into the evo-
lution of quadrupoles irrespective of the initial conditions when
the Weizsäcker–Williams gluon distribution appears in the process
before small-x evolution is included. As far as the Weizsäcker–
Williams gluon distribution is concerned, one finds that after two
steps of evolution, the contribution of quadrupoles appears as the
following S-matrix amplitude

2 Inspired by Ref. [20], we find that the small-x evolution equation of the
Weizsäcker–Williams linearly polarized gluon distributions is given by a slightly
different correlator 〈Tr[∂i U (v)]U †(v ′)[∂ j U (v ′)]U †(v)〉Y . We will leave the detailed
derivation and phenomenological study of the linearly polarized gluon distributions
to a future work [21].
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Fig. 1. Illustration of two-step evolution which generates the quadruple amplitude. The dotted lines indicate the moments of the interaction with the target nucleus and the
dashed line represents the cut. The two dipoles correspond to the two internal color lines, and are characterized by the coordinates (z1, v) and (v ′, z2) respectively at the
time of the interaction. The single external color line interacts as a quadrupole defined by the coordinates (v, z1, z2, v ′).
1

Nc
Tr

[
U (z1)U †(z2)U

(
v ′)U †(v)

]

× 1

Nc
Tr

[
U (v)U †(z1)

] 1

Nc
Tr

[
U (z2)U †(v ′)]. (13)

Starting from the correlator 〈Tr[∂i U (v)]U †(v ′)[∂i U (v ′)]U †(v)〉Y , the
first step of evolution is given by Eq. (12) which generates terms
like 〈Tr[U (z1)U †(v ′)[∂i U (v ′)]U †(v)]Tr[U (v)U †(z1)]〉Y . One can fur-
ther evolve such object and find that the second step of evolu-
tion yields a combination of a quadrupole plus two dipoles as
in Eq. (13). In terms of the dipole picture and ’t Hooft’s dou-
ble line notation, we illustrate the above terms in Fig. 1 where
the double lines at v and v ′ have the highest longitudinal mo-
mentum, the double line at z1 has the next highest longitudinal
momentum and the double line at z2 has the smallest longitu-
dinal momentum. Fig. 1 and its radiative corrections are charac-
terized by the feature that the double line in the middle does
not directly connect to the virtual photons. By squaring the pro-
duction amplitude, one gets the basic color and spatial structure
of a quadrupole 1

Nc
Tr[U (z1)U †(z2)U (v ′)U †(v)] together with two

dipoles 1
Nc

Tr[U (v)U †(z1)] and 1
Nc

Tr[U (z2)U †(v ′)] before further
evolution. This shows that the Weizsäcker–Williams distribution
does not have a closed evolution equation on its own and, de-
spite its apparently simpler structure in terms of only two coordi-
nates, the full quadrupole evolution is needed to include small-
x effects. In terms of the DIS dijet process considered in [4,
5], the correlation limit taken to avoid the quadrupole and be
able to express the cross section in terms of the Weizsäcker–
Williams distribution does not help when small-x evolution is
considered. The same argument and conclusion also holds for
the single gluon production in the gedanken DIS process using
the current j = − 1

4 F a
μν F a

μν . However, for inclusive and semi-
inclusive DIS, one can show that the evolution always involves only
dipole amplitudes and this allows one to write a closed equation,
namely the Balitsky–Kovchegov equation to describe these pro-
cesses.

3. The weak interaction limit

In order to study the evolution of color quadrupoles in the
dilute regime, where the evolution will be described entirely by
the BFKL evolution equation, let us consider the leading twist
approximation to the dipole and quadrupole amplitudes and the
corresponding evolution equations. In this leading twist approxi-
mation, the dipole amplitude S(x1, x2)Y = 1

Nc
〈Tr U (x1)U †(x2)〉Y can

be written as S(x1, x2)Y = 1 − C F
2 	(x1, x2)Y with 	 satisfying the

dipole form of the BFKL equation

∂

∂Y
	(x1, x2)Y = Ncαs

2π2

∫
d2z

(x1 − x2)
2

(x1 − z)2(x2 − z)2

× [
	(x1, z)Y + 	(z, x2)Y − 	(x1, x2)Y

]
. (14)
For the quadrupole amplitude3 Q (x1, x′
1, x′

2, x2)Y =
1

Nc
〈Tr U (x1)U †(x′

1)U (x′
2)U †(x2)〉Y , we expand to second order in

g A with A being the background gauge field. A simple calculation
shows that this expansion can be written in terms of the linear
dipole interaction 	 (see Eq. (B21) in Ref. [5])4

Q
(
x1, x′

1, x′
2, x2

)
Y

= 1 − C F

2

[
	(x1, x2)Y + 	

(
x′

1, x′
2

)
Y + 	

(
x1, x′

1

)
Y + 	

(
x2, x′

2

)
Y

− 	
(
x1, x′

2

)
Y − 	

(
x′

1, x2
)

Y

]
. (15)

For the full quadrupole amplitude, all possible coordinate pairings
have to be considered but it is important to remember that for
the expression of the cross section for the dijet production in DIS,
and therefore also for the derivation of the Weizsäcker–Williams
gluon distribution, the quadrupole appears through the combina-
tion Q (x1, x′

1, x′
2, x2)− S(x1, x2)− S(x′

1, x′
2)+1. In the linear regime,

the contributions from interactions hooking both gluons to the
(x1, x2) dipole or both gluons to the (x′

1, x′
2) dipole cancel out.

Eq. (14) above can be obtained directly from the BK equation
by expressing the dipole amplitude in terms of 	 and neglecting
the nonlinear terms in 	’s. The same approach can be easily fol-
lowed for the quadrupole evolution equation. First, let us rewrite
the quadrupole evolution equation in Eq. (4) by grouping the dif-
ferent terms with the same dipole kernel

∂

∂Y
Q

(
x1, x′

1, x′
2, x2

)

= − Ncαs

(2π)2

∫
d2z⊥

{
(x1 − x2)

2

(x1 − z)2(x2 − z)2

[
Q

(
x1, x′

1, x′
2, x2

)

− Q
(
z, x′

1, x′
2, x2

)
S(x1, z) − Q

(
x1, x′

1, x′
2, z

)
S(x2, z)

+ S(x1, x2)S
(
x′

1, x′
2

)] + (x′
1 − x′

2)
2

(x′
1 − z)2(x′

2 − z)2

[
Q

(
x1, x′

1, x′
2, x2

)

− Q
(
x1, z, x′

2, x2
)

S
(
x′

1, z
) − Q

(
x1, x′

1, z, x′
2

)
S
(
x′

2, z
)

+ S(x1, x2)S
(
x′

1, x′
2

)] + (x1 − x′
1)

2

(x1 − z)2(x′
1 − z)2

[
Q

(
x1, x′

1, x′
2, x2

)

− Q
(
z, x′

1, x′
2, x2

)
S(x1, z) − Q

(
x1, z, x′

2, x2
)

S
(
x′

1, z
)

+ S
(
x1, x′

1

)
S
(
x2, x′

2

)] + (x2 − x′
2)

2

(x2 − z)2(x′
2 − z)2

[
Q

(
x1, x′

1, x′
2, x2

)

− Q
(
x1, x′

1, z, x2
)

S
(
x′

2, z
) − Q

(
x1, x′

1, x′
2, z

)
S(x2, z)

+ S
(
x1, x′

1

)
S
(
x2, x′

2

)] − (x1 − x′
2)

2

(x1 − z)2(x′
2 − z)2

3 Note that we have interchanged x2 and x′
2 in the definition of the quadrupole

in order to match the physical observable calculated in the DIS dijet process.
4 The BFKL limit has also been found by D. Triantafyllopoulos (private communi-

cation).
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× [
S(x1, x2)S

(
x′

1, x′
2

) + S
(
x1, x′

1

)
S
(
x2, x′

2

)
− Q

(
x1, z, x′

2, x2
)

S
(
x′

1, z
) − Q

(
x1, x′

1, x′
2, z

)
S(x2, z)

]

− (x′
1 − x2)

2

(x′
1 − z)2(x2 − z)2

[
S(x1, x2)S

(
x′

1, x′
2

)

+ S
(
x1, x′

1

)
S
(
x2, x′

2

) − Q
(
z, x′

1, x′
2, x2

)
S(x1, z)

− Q
(
x1, x′

1, z, x2
)

S
(
x′

2, z
)]}

, (16)

where we have assumed that, in a large nucleus, one can factorize
〈O1 O2〉Y into 〈O1〉Y 〈O2〉Y . Then we use the expressions quoted
above for Q and S in terms of 	 and keep only the linear terms.
It is easy to see that each of the lines of Eq. (16) becomes a BFKL
equation of the form given in Eq. (14) for each pair of coordi-
nates. This is in complete agreement with what one would expect
from just evolving Eq. (15) with BFKL in the linear regime. BFKL
evolution generates the exponential growth of the quadrupole T -
matrix (T Q = 1 − Q ) in terms of the rapidity Y . The saturation
scale Q s(Y ) is usually used to characterize the scale at which T
approaches 1. If one fixes the relative size of all the spatial coor-
dinates of the quadrupole, one expects that quadrupole evolution
in the dilute regime should obey one single BFKL equation and
thus exhibit the same geometrical scaling behavior as for dipoles
[23–25] in terms of the variable r2 Q 2

s (Y ) with r being the typical
scale of the quadrupole.

Similarly, in the dilute regime, the correlator involved in the
calculation of the Weizsäcker–Williams distribution can be written
in terms of 	’s as:

〈
Tr

[
∂i U (v)

]
U †(v ′)[∂i U

(
v ′)]U †(v)

〉
Y = C F

2
∂vi ∂v ′

i
	

(
v, v ′). (17)

Naturally, expanding the correlators in Eq. (12) and keeping only
terms linear in 	 or its derivatives leads to the same result as
differentiating twice Eq. (14).

In the dilute regime where the gluon density is low, we know
that the Weizsäcker–Williams gluon distribution xG(1) and the
dipole gluon distribution xG(2) both reduce to the same leading
twist result. To see this connection explicitly recall that xG(1) is
given by the Fourier transform of the correlator in (17) and there-
fore the derivatives can be replaced by k2⊥ after integrating by
parts.

4. The unitarity limit and fixed points

Let us begin with the discussion on the dipole amplitude.
Schematically, the Balitsky–Kovchegov equation can be cast into

∂

∂Y
S =

∫
Pd→dd(S S − S), (18)

with S being the dipole amplitude and Pd→dd > 0 being the prob-
ability of a dipole splitting into two new dipoles per unit rapidity.

With Eq. (9) and the assumption of factorization of operators,
the evolution equation of quadrupoles can be schematically writ-
ten as

∂

∂Y
Q =

∫
Pq→qd(Q S − Q ) +

∫
Pq→dd(S S − Q ), (19)

where Q represents the generic quadrupole amplitude, Pq→qd
is the probability that the original quadrupole splits into a
quadrupole and a dipole due to gluon emissions and Pq→dd stands
for the probability of the original quadrupole splitting into two
dipoles. The probabilistic interpretation of the quadrupole evolu-
tion equation is of course only heuristic since Pq→qd and Pq→dd
are not positive-definite. However, we find that Pq→qd + Pq→dd =
αs Ncd2 z
(2π)2 K1 is always positive (this equality is the identity in

Eq. (9)). It seems to make sense to speak of the probability that
the original quadrupole decays to qd and dd inclusively, but not
that it decays to qd or dd exclusively.

S = 0 and S = 1 are two fixed points of Eq. (18), and Q = 0
and Q = 1 are fixed points of Eq. (19) with S = Q = 0 a stable
fixed point and S = Q = 1 an unstable fixed point. Let us first
write S = 0 + δS , Q = 0 + δQ where δS and δQ are small pertur-
bations, then Eqs. (18) and (19) become ∂

∂Y δS = − ∫
Pd→ddδS and

∂
∂Y δQ = − ∫

(Pq→qd + Pq→dd)δQ . Since Pd→dd > 0 and Pq→qd +
Pq→dd ∝ K1 > 0, the evolution equations will drive δS and δQ
to zero, thus S = Q = 0 is a stable fixed point. Now let us take
S = 1 − δS and Q = 1 − δQ , then Eq. (18) becomes ∂

∂Y δS =∫
Pd→dd(x, y, z)(δS(x, z) + δS(y, z) − δS(x, y)) which is exactly the

BFKL equation. Similarly, as shown in Section 3, δQ obeys the BFKL
equation in the weak interaction limit as well. It is well known
that BFKL evolution will drive δS and δQ away from zero in terms
of exponential growth. Therefore, the fixed point S = Q = 1 is un-
stable. We do not know if these fixed points are the only fixed
points for the quadrupole evolution, but it is certainly true for the
Balitsky–Kovchegov equation. As a result, we expect that the evolu-
tion will always drive the dipole and quadrupole amplitudes from
the dilute limit towards the stable fixed point S = Q = 0 which
leads to unitarity and saturation.

Finally, we note that there is a traveling wave picture [26,27]
for the evolution of Q , or of T Q = 1− Q , exactly analogous to that
for S , or T = 1− S . The velocities of the traveling waves for T Q and
T are identical, since the velocity is determined by BFKL evolution.
If one scales all coordinates in T Q uniformly then the shapes of
the traveling wave front of T Q and T are identical except near the
top of the fronts, that is where nonlinear terms in the evolution
become important.

5. Conclusion

In summary, using the JIMWLK Hamiltonian, we have derived
the evolution equation for the quadrupole and the Weizsäcker–
Williams gluon distribution at finite Nc . We find that they fol-
low BFKL evolution in the dilute regime and reach the satura-
tion regime as a stable fixed point. Following the discussion in
Ref. [27,28], we know that BFKL evolution together with a satura-
tion boundary are responsible for the geometrical scaling behavior
[23–25] of the dipole gluon distribution. Since we also observe the
same properties for the quadrupole evolution equation, we believe
that the Weizsäcker–Williams gluon distribution should exhibit ge-
ometrical scaling behavior as well, although its evolution equation
is much more complicated. It seems that quadrupoles evolve es-
sentially the way dipoles do, but their evolution is more difficult
to evaluate due to the complicated structure of the evolution equa-
tion. The difference of their small-x evolution behavior lies in
the transition region between the scaling regime and the satura-
tion regime. Likely, numerical studies of quadrupole evolution will
be necessary to understand the details of their different behav-
ior.
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Appendix A. Derivation of the evolution equation for the
quadrupole amplitude

Here we present some essential details of the derivation lead-
ing to Eq. (4). We begin with Eq. (1) with the operator O set to
be 1

Nc
〈Tr(U (x1)U †(x′

1)U (x2)U †(x′
2))〉Y . Since there are four different

terms inside the square bracket in the definition of ηab
uv as shown

in Eq. (2), we compute the contributions of these four terms sepa-
rately and provide the results as follows.

The first term which involves the identity matrix in color space
δab yields the contribution I1

I1 = −αsC F

2π2

∫
d2z⊥

[
(x′

1 − x1)
2

(x′
1 − z)2(z − x1)2

+ (x′
2 − x2)

2

(x′
2 − z)2(z − x2)2

]

× 〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ A

(
x1, x′

1, x2, x′
2; z

)

×
{

1

Nc

〈
Tr

[
U †(x′

1

)
U (x2)

]
Tr

[
U †(x′

2

)
U (x1)

]〉
Y

− 1

N2
c

〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

}
. (A.1)

With the help of the identity T b Ṽ ba
v = U v T aU †

v , the second term

which involves the term (Ṽ †
u Ṽ v)ab gives the contribution I2

I2 = −αsC F

2π2

∫
d2z⊥

[
(x′

1 − x2)
2

(x′
1 − z)2(z − x2)2

+ (x′
2 − x1)

2

(x′
2 − z)2(z − x1)2

]

× 〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ B

(
x1, x′

1, x2, x′
2; z

)

×
{

1

Nc

〈
Tr

[
U (x1)U †(x′

1

)]
Tr

[
U (x2)U †(x′

2

)]〉
Y

− 1

N2
c

〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

}
. (A.2)

The third term −(Ṽ †
u Ṽ z)

ab and the fourth term −(Ṽ †
z Ṽ v)ab give the

contributions I3 and I4 respectively. These have identical forms but
different variables, their sum reads

I3 + I4

= αs Nc

(2π)2

∫
d2z⊥ K2

(
x1; x′

1, x′
2; z

)

× 1

Nc

〈
Tr

[
U (x1)U †(z)

]
Tr

[
U (z)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x′

1; x1, x2; z
)

× 1

Nc

〈
Tr

[
U (z)U †(x′

1

)]
Tr

[
U (x1)U †(z)U (x2)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x2; x′

1, x′
2; z

)

× 1

Nc

〈
Tr

[
U (x2)U †(z)

]
Tr

[
U (x1)U †(x′

1

)
U (z)U †(x′

2

)]〉
Y

+ αs Nc

(2π)2

∫
d2z⊥ K2

(
x′

2; x1, x2; z
)

× 1

Nc

〈
Tr

[
U (z)U †(x′

2

)]
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(z)

]〉
Y

− αs Nc

(2π)2

∫
d2z⊥

1

N2
c

〈
Tr

[
U (x1)U †(x′

1

)
U (x2)U †(x′

2

)]〉
Y

× [
K2

(
x1; x′

1, x′
2; z

) + K2
(
x′

1; x1, x2; z
)

+ K2
(
x2; x′

1, x′
2; z

) + K2
(
x′

2; x1, x2; z
)]

. (A.3)

Noticing that C F = N2
c −1

2Nc
and using Eq. (9), it is straightfor-

ward to check that the coefficient of the non-leading Nc terms
1

N2
c
〈Tr[U (x1)U †(x′

1)U (x2)U †(x′
2)]〉Y vanishes. In the end, we find

the sum of all these four contributions leads to the right-hand
side of Eq. (4) without finite Nc corrections.
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