844 research outputs found
Effect of prior laser microstructural refinement on the formation of amorphous layer in an Al86Co7.6Ce6.4 alloy
Laser surface melting (LSM) pre-treatment was conducted before large area electron beam (LAEB) treatment in an attempt to eliminate the cracking of the amorphous layer. In our previous work, LAEB treatment successfully generated an amorphous layer on a cast polycrystalline Al-Co-Ce glass forming alloy. However, cracking was found and was associated with large and brittle Al8Co2Ce phase in the bulk material. Results show that prior LSM treatment in this present work can effectively refine the microstructure of as-cast material, decreasing the particle size and particle spacing of Al8Co2Ce phase. This decrease in the microstructural length scale greatly reduced the results of cracking of the amorphous layer. The LAEB pulse number required for the homogenisation and amorphisation of treated layer was also decreased for the laser pre-treated sample compared to as-cast material
High-resolution Ce 3d-edge resonant photoemission study of CeNi_2
Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed
for alpha-like compound CeNi_2 with extremely high energy resolution (full
width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight.
The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi
energy which can be assigned to the tail of the Kondo resonance. However, the
spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2}
peak is washed out, in contrast to the RPES spectrum at the Ce 3d -> 4f RPES
threshold. This is interpreted as due to the different surface sensitivity, and
the bulk-sensitive Ce 3d -> 4f RPES spectra are found to be consistent with
other electron spectroscopy and low energy properties for alpha-like
Ce-transition metal compounds, thus resolves controversy on the interpretation
of Ce compound photoemission. The 4f spectral weight over the whole valence
band can also be fitted fairly well with the Gunnarsson-Schoenhammer
calculation of the single impurity Anderson model, although the detailed
features show some dependence on the hybridization band shape and (possibly) Ce
5d emissions.Comment: 4 pages, 3 figur
Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects
Using the helicity method we derive complete formulas for the joint angular
decay distributions occurring in semileptonic hyperon decays including lepton
mass and polarization effects. Compared to the traditional covariant
calculation the helicity method allows one to organize the calculation of the
angular decay distributions in a very compact and efficient way. In the
helicity method the angular analysis is of cascade type, i.e. each decay in the
decay chain is analyzed in the respective rest system of that particle. Such an
approach is ideally suited as input for a Monte Carlo event generation program.
As a specific example we take the decay () followed by the nonleptonic decay for which we show a few examples of decay distributions which are
generated from a Monte Carlo program based on the formulas presented in this
paper. All the results of this paper are also applicable to the semileptonic
and nonleptonic decays of ground state charm and bottom baryons, and to the
decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos
corrected, comments added, references added and update
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
On Image Contours of Projective Shapes
International audienceThis paper revisits classical properties of the outlines of solid shapes bounded by smooth surfaces, and shows that they can be established in a purely projective setting, without appealing to Euclidean measurements such as normals or curvatures. In particular, we give new synthetic proofs of Koenderink's famous theorem on convexities and concavities of the image contour, and of the fact that the rim turns in the same direction as the viewpoint in the tangent plane at a convex point, and in the opposite direction at a hyperbolic point. This suggests that projective geometry should not be viewed merely as an analytical device for linearizing calculations (its main role in structure from motion), but as the proper framework for studying the relation between solid shape and its perspective projections. Unlike previous work in this area, the proposed approach does not require an oriented setting, nor does it rely on any choice of coordinate system or analytical considerations
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
- âŠ