1,053 research outputs found

    Genetic variation within GRIN2B in adolescents with alcohol use disorder may be associated with larger left posterior cingulate cortex volume.

    Get PDF
    OBJECTIVE: Brain structure differences and adolescent alcohol dependence both show substantial heritability. However, exactly which genes are responsible for brain volume variation in adolescents with substance abuse disorders are currently unknown. The aim of this investigation was to determine whether genetic variants previously implicated in psychiatric disorders are associated with variation in brain volume in adolescents with alcohol use disorder (AUD). METHODS: The cohort consisted of 58 adolescents with DSM-IV AUD and 58 age and gender-matched controls of mixed ancestry ethnicity. An Illumina Infinium iSelect custom 6000 bead chip was used to genotype 5348 single nucleotide polymorphisms (SNPs) in 378 candidate genes. Magnetic resonance images were acquired and volumes of global and regional structures were estimated using voxel-based morphometry. To determine whether any of the genetic variants were associated with brain volume, association analysis was conducted using linear regression in Plink. RESULTS: From the exploratory analysis, the GRIN2B SNP rs219927 was associated with brain volume in the left posterior cingulate cortex (p<0.05), whereby having a G-allele was associated with a bigger volume. CONCLUSION: The GRIN2B gene is involved in glutamatergic signalling and may be associated with developmental differences in AUD in brain regions such as the posterior cingulate cortex. Such differences may play a role in risk for AUD, and deserve more detailed investigation

    Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity

    Get PDF
    Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines

    Chimpanzees overcome the tragedy of the commons with dominance

    Get PDF
    Competition over common-pool resources (CPR) is a ubiquitous challenge for social animals. Many species face similar dilemmas, yet our understanding of the evolutionary trajectory of CPR social strategies remains unexplored. Here, we provide a first look at the social strategies of our closest living relatives, chimpanzees (Pan troglodytes), in two novel resource dilemma experiments. Dyads of chimpanzees were presented with renewable resource systems, collapsible at a quantity-dependent threshold. Dyads had to continuously resist overconsumption to maximize collective gains. In study 1, dyads of chimpanzees sustained a renewing juice source. Inequality of juice acquisition between partners predicted sustaining success, indicating that one individual dominated the task while the partner inhibited. Dyads in study 2 fed together on accumulating carrot pieces but could end the accumulation any time by grabbing an immediate selfish source of carrots. Dyads with low tolerance were more successful at collectively sustaining the resource than highly tolerant dyads. Further, the dominant individual was more likely to cause collapse in dyads with low tolerance than dyads with high tolerance. These results indicate that chimpanzees use a dominance-based monopolisation strategy moderated by social tolerance to overcome the tragedy of the commons

    Brain perfusion imaging with voxel-based analysis in secondary progressive multiple sclerosis patients with a moderate to severe stage of disease: a boon for the workforce

    Get PDF
    Background: The present study was carried out to evaluate cerebral perfusion in multiple sclerosis (MS) patients with a moderate to severe stage of disease. Some patients underwent hyperbaric oxygen therapy (HBOT) and brain perfusion between before and after that was compared. Methods: We retrospectively reviewed 25 secondary progressive (SP)-MS patients from the hospital database. Neurological disability evaluated by Expanded Disability Status Scale Score (EDSS). Brain perfusion was performed by (99 m) Tc-labeled bicisate (ECD) brain SPECT and the data were compared using statistical parametric mapping (SPM). In total, 16 patients underwent HBOT. Before HBOT and at the end of 20 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed again then the results were evaluated and compared. Brain perfusion was performed by (99 m) Tc-labeled bicisate (ECD) brain SPECT and the data were compared using statistical parametric mapping (SPM). Results: A total of 25 SP-MS patients, 14 females (56 %) and 11 males (44 %) with a mean age of 38.92 ± 11. 28 years included in the study. The mean disease duration was 8.70 ± 5.30 years. Of the 25 patients, 2 (8 %) had a normal SPECT and 23 (92 %) had abnormal brain perfusion SPECT studies. The study showed a significant association between severity of perfusion impairment with disease duration and also with EDSS (P <0.05). There was a significant improvement in pre- and post-treatment perfusion scans (P <0.05), but this did not demonstrate a significant improvement in the clinical subjective and objective evaluation of patients (P >0.05). Conclusions: This study depicted decreased cerebral perfusion in SP-MS patients with a moderate to severe disability score and its association with clinical parameters. Because of its accessibility, rather low price, practical ease, and being objective quantitative information, brain perfusion SPECT can be complementing to other diagnostic modalities such as MRI and clinical examinations in disease surveillance and monitoring. The literature on this important issue is extremely scarce, and follow up studies are required to assess these preliminary results

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    Get PDF
    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies

    In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion

    Get PDF
    Background: Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment, altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis, including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly facilitate the development of cancer treatment options aimed at preventing metastasis. Methods: We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers. Results: In breast cancer, various tests show that COL4A1 and COL4A2 overexpression and COL17A1 (BP180, BPAG2) underexpression provide independent prognostic strength (HR = 1.25, 95% CI = 1.17–1.34, p = 3.03 × 10; HR = 1.18, 95% CI = 1.11–1.25, p = 8.11 × 10; HR = 0.86, 95% CI = 0.81–0.92, p = 4.57 × 10; respectively). Immunohistochemistry on ductal breast cancers confirmed that the COL17A1 protein product, collagen XVII, is underexpressed. This strongly correlates with advanced stage, increased invasion, and postmenopausal status. In contrast, immunohistochemistry on cervical tumors showed that collagen XVII is overexpressed in cervical cancer and this is associated with increased local dissemination. Interestingly, consistent with the opposed direction of misexpression in these cancers, the COL17A1 promoter is hypermethylated in breast cancer and hypomethylated in cervical cancer. We also find that the COL17A1 promoter is hypomethylated in head and neck squamous cell carcinoma, lung squamous cell carcinoma, and lung adenocarcinoma, in all of which collagen XVII overexpression has previously been shown. Conclusions: Paradoxically, collagen XVII is underexpressed in breast cancer and overexpressed in cervical and other epithelial cancers. However, the COL17A1 promoter methylation status accurately predicts both the direction of misexpression and the increased invasive nature for five out of five epithelial cancers. This implies that aberrant epigenetic control is a key driver of COL17A1 gene misexpression and tumor cell invasion. These findings have significant clinical implications, suggesting that the COL17A1 promoter methylation status can be used to predict patient outcome. Moreover, epigenetic targeting of COL17A1 could represent a novel strategy to prevent metastasis in patients

    Comparative transcriptomic analysis reveals similarities and dissimilarities in saccharomyces cerevisiae wine strains response to nitrogen availability

    Get PDF
    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations
    • …
    corecore