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In epithelial cancers, aberrant COL17A1 @
promoter methylation predicts its
misexpression and increased invasion
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Abstract

Background: Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment,
altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis,
including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of
misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly
facilitate the development of cancer treatment options aimed at preventing metastasis.

Methods: We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether
their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast
cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers.

Results: In breast cancer, various tests show that COL4AT and COL4A2 overexpression and COLT7AT (BP180, BPAG2)
underexpression provide independent prognostic strength (HR =125, 95% Cl=1.17-1.34, p=3.03 X 107'% HR=1.18,
95% Cl=1.11-1.25,p=811x10"'% HR = 0.86, 95% Cl = 0.81-0.92, p = 4.57 x 10"°; respectively). Immunohistochemistry
on ductal breast cancers confirmed that the COL17AT protein product, collagen XVII, is underexpressed. This strongly
correlates with advanced stage, increased invasion, and postmenopausal status. In contrast, immunohistochemistry on
cervical tumors showed that collagen XVII is overexpressed in cervical cancer and this is associated with increased local
dissemination. Interestingly, consistent with the opposed direction of misexpression in these cancers, the COL17A1
promoter is hypermethylated in breast cancer and hypomethylated in cervical cancer. We also find that the COLT7AT
promoter is hypomethylated in head and neck squamous cell carcinoma, lung squamous cell carcinoma, and lung
adenocarcinoma, in all of which collagen XVII overexpression has previously been shown.

Conclusions: Paradoxically, collagen XVII is underexpressed in breast cancer and overexpressed in cervical and other
epithelial cancers. However, the COL17AT promoter methylation status accurately predicts both the direction of
misexpression and the increased invasive nature for five out of five epithelial cancers. This implies that aberrant
epigenetic control is a key driver of COL17AT gene misexpression and tumor cell invasion. These findings have
significant clinical implications, suggesting that the COL17AT promoter methylation status can be used to predict
patient outcome. Moreover, epigenetic targeting of COLT7AT could represent a novel strategy to prevent metastasis in
patients.
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Background

Metastasis, the spread of cancer cells to distant organs,
is one of the leading causes of death among cancer pa-
tients. To be able to disseminate, cancer cells need to
overcome a number of barriers. In epithelia, cell-cell in-
teractions and a basement membrane initially constitute
major obstacles. In addition, once local invasion through
the basement membrane has occurred, tumor cells need
to be able to survive in the very different environment of
the stroma [1].

The stroma consists of fibroblasts and extracellular
matrix (ECM). The ECM is composed of polysaccha-
rides, water, and stromal cell-secreted proteins, as well
as soluble growth factors sequestered by matrix compo-
nents [2]. Two types of macromolecules in the ECM,
proteoglycans and fibrous proteins, influence cell
growth, migration, attachment, and differentiation [3].
Collagens are fibrous proteins, which, with their high
abundance in the ECM, contribute substantially to these
processes [4]. In humans, a total of 44 collagen genes
encode 28 varieties of collagen proteins [5].

While initially regarded as a physical barrier to tumor
cell migration, recent studies have shown that collagens
also support tumor progression depending on the stage
of cancer development [6]. Associations between aber-
rant expression of collagens and tumor progression and
metastasis are well established. For instance, increased
density of collagen type I in lymph nodes is a clinical
marker for breast cancer invasion [7]. Collagen I is also
differentially expressed during colorectal tumorigenesis
[8]. High levels of collagen type VI promote epithelial to
mesenchymal transition, angiogenesis, inflammation,
and chemotherapy resistance [9]. Collagen XI is
expressed at high levels in human gliomas, colorectal
cancer, and metastatic ovarian carcinoma, and at low
levels in breast cancer [10-13]. Hence, collagen levels in
the tumor stroma represent a valuable diagnostic param-
eter to differentiate between normal tissue, low-grade
tumors, and metastatic cancer.

In contrast to other collagens, collagen types XIII,
XVII, XXIII, and XXV are transmembrane proteins,
characterized by an N-terminal cytoplasmic domain and
an extracellular C-terminus that contains 3 to 15 collag-
enous domains [14]. Most research involving collagen
XVII has focused on its role in healthy and diseased
skin. Collagen XVII is a hemidesmosomal adhesion pro-
tein, whose expression in normal skin is limited to the
basal keratinocytes, which are anchored to the basement
membrane via collagen XVII [15]. However, it is overex-
pressed in squamous cell carcinoma (SCC) of the skin
and in melanoma [15, 16].

Here, we systematically study the expression of all 44
collagen genes in breast cancer. We find that reduced
expression of COL17A1, the gene that encodes collagen
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XVII, is most significantly associated with poor patient
prognosis. Consistently, collagen XVII levels are reduced
in breast tumors and this is strongly associated with
tumor stage, invasion, and menopausal status. Con-
versely, collagen XVII levels are elevated in cervical can-
cer and this is associated with increased local metastasis.
Interestingly, the COL17A1 promoter methylation status
correctly predicts the direction of collagen XVII misex-
pression in multiple types of epithelial cancers, including
breast and cervical cancer.

Results

Underexpression of COL17A1 is a marker for poor
prognosis in breast cancer

To identify collagens whose misexpression may contrib-
ute to breast cancer development, and in particular me-
tastasis, we systematically evaluated expression levels of
all 44 collagen genes. By combining microarray expres-
sion data from 26 previously published datasets, Cox
proportional hazard analyses were performed based on
expression level and distant metastasis-free survival (see
the “Methods” section). For 18 of the 44 collagen genes,
increased or decreased expression was significantly asso-
ciated with poor patient outcome (HR with 95% CI <> 1,
p<0.05, 1052 < n <4177; Additional file 1: Table S1).

We more stringently tested how well the misexpres-
sion of these genes might provide independent prognos-
tic strength by including various other clinical
parameters, such as lymph node status, tumor size, and
menopausal status, all of which are included in Adju-
vant! Online and the Nottingham Prognostic Index
(NPI) [17, 18]. This reduced the number of significant
associations from 18 to 8 collagen genes that passed all
three tests with p < 0.05 (HR with 95% CI <> 1, 1052 <n
<4177) (Additional file 1: Table S1).

We also assessed whether patient survival significantly
differed between patients whose tumors expressed low
and high levels of these genes. This further reduced the
number of genes to three, with overexpression of
COL4A1 and COL4A2 and underexpression of COL17A1
correlating with poor distant metastasis-free patient
survival (p=1.71x 107, 1 =3925; p = 0.0098, n = 4177
and p=0.0001, n=3925, respectively, log-rank test;
Additional file 1: Table S1).

In an effort to independently validate these results, we
used a combination of 28 other microarray datasets, as
described [19, 20]. However, this showed that COL4A1I
expression did not significantly change (1.15-fold in-
crease, p =0.2574, ¢t test, n=1137) and that COL4A2
expression was significantly reduced (1.53-fold decrease,
p=7.97x107'° n =2830), rather than increased (Fig. 1a).
Only COL17A1 misexpression was validated, as it consist-
ently decreased in all analyses, the latter showing a 3.70-
fold decrease (p =4.93 x 107", 1 = 3004; Fig. 1a). Analysis
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Fig. 1 Reduced COL17AT expression correlates with poor breast cancer patient prognosis. a Fold change in normalized COL4A1, COL4A2 (4A2),
and COLT7AT (17AT1) expression using 28 combined previously published datasets. p values: t test. b Fold change in normalized COL17A1
expression using the TCGA breast cancer RNAseq dataset. p value: Mann-Whitney U test. c—e Distant metastasis-free survival (c), recurrence-free
survival (d), and overall survival (e) for breast cancer patients whose tumors express high (green) or low (red) COL17AT levels. Patients were split in
low and high expression groups using the median expression level as the cut-off [23]. p values: log-rank test. p value summaries: n/s not
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of COLI7A1I levels using RNAseq data from The Cancer
Genome Atlas (TCGA) [21, 22] also showed a significant
downregulation (p < 0.0001, 7 = 1075; Fig. 1b). We there-
fore hereafter focus on COLI17A1.

In addition to the above survival analyses (Additional
file 1: Table S1), we investigated whether reduced
COLI7A1 expression is associated with poor distant
metastasis-free survival, recurrence-free survival, and
overall patient survival, as previously described [23].
This confirmed significant correlations between these
parameters (p = 0.0044, n=1601; p=6.58x107"% n=
3524; p=0.0341, n=1115, respectively, log-rank test;
Fig. 1c—e).

Underexpression of collagen XVII is a marker for advanced
stage, increased invasion, and postmenopausal status in
breast cancer

Focusing on protein-level expression of collagen XVII,
the product of the COLI7AI gene, we next performed
immunohistochemistry (IHC) using a previously well-
characterized antibody [15, 16]. We used tissue microar-
rays with a total of 227 tissue samples, including 57
normal control breast samples, 20 hyperplastic breast
samples, and 150 ductal breast carcinomas. The staining
intensity ranged from negative to moderate in the nor-
mal and hyperplastic samples and from negative to
strong in the tumor samples (Fig. 2). The corresponding

H&E-stained images are available in Additional file 1:
Figure S1. The increase in the fraction of strongly
stained sections between normal and tumor samples
(from 0% (0/56) to 4% (6/150), Fig. 2) was not statisti-
cally significant (p =0.1908, Fisher’s exact test). Neither
was the decrease in the fraction of moderately stained
sections (from 9% (5/57) to 3% (4/150), p=0.1185;
Fig. 2). We therefore hereafter analyzed differences only
based on whether staining was negative or positive.

Consistent with our above prognostic analyses, the
ductal breast carcinomas stained positive for collagen
XVII significantly less frequently that normal control tis-
sue (22% (33/150) vs 42% (24/57), p =0.0038, Fisher’s
exact test; Table 1). The frequency in hyperplastic mam-
mary epithelium, potentially a precursor of mammary
carcinoma, did not significantly differ (55% (11/20) vs
42% (24/57), p = 0.2308).

We next assessed whether the reduced frequency of
collagen XVII-positive staining in the tumors was specif-
ically associated with tumor grade and markers used for
diagnosis and determining the most effective treatment
regimen. We did not observe any remarkable differences
between tumors with differential estrogen receptor (ER),
progesterone receptor (PR), or HER2 amplification sta-
tus (Table 1). However, the already significant reduction
in collagen XVII positivity from 42% (24/57) in normal
samples to 26% (29/111) in early stage tumors (stage I/



Thangavelu et al. Clinical Epigenetics (2016) 8:120

Page 4 of 13

MNegative Weak

Strong

Normal
i
\

33/57 (58%) W — || 19557 (33%) %

N )

Hyperplasia

/20 (45%) 10/2D (50%) "

1/20 (5%)

Ductal carcinoma

1177150 (78%) || 231150 (15%)

41150 (3%) &

Fig. 2 Collagen XVII is underexpressed in breast cancer. Tissue microarrays with a total of 57 normal breast tissues, 20 hyperplastic breast tissues,
and 150 breast ductal carcinomas were stained with an anti-collagen XVII antibody [15, 16]. Numbers of samples in each category, as well as the
total number of samples, are indicated. Percentages indicate frequencies of observations per row. Scale bar, 50 um

II; p=0.0273) was further reduced significantly to 10%
(4/39) in late stage cancers (stages III/IV; p=0.0005
compared to normal, p = 0.0287 compared to stages I/II).
The fractions of tumors that stained positive also signifi-
cantly declined as tumors become more invasive, from
28% (27/97) in tumors that only locally invaded the sub-
mucosa and/or muscle (T1/2) to 11% (6/53) in tumors
that invaded through underlying muscle and/or into other
organs (T3/4) (p = 0.0143). Only 8% (2/25) of the most in-
vasive cancers stained positive (p =0.0015 compared to
42% (24/57) in normal tissue). Collagen XVII positivity
also reduced with an increase in the number of positive
lymph nodes and metastasis. Yet, this trend was not statis-
tically significant (Table 1). Finally, with positive staining
of 30% (21/71) of premenopausal carcinomas and 14% (4/
42) of postmenopausal samples, menopausal status had a
strong impact on collagen XVII expression (p =0.0263;
Table 1). Taken together, we conclude that the frequency
of collagen XVII-positive tumors declines with advanced
stage, increased invasion, and postmenopause.

Collagen XVII is overexpressed in cervical cancer

Our interest in women’s cancers prompted us to also as-
sess collagen XVII expression in cervical cancer. In con-
trast to breast tumors, cervical cancers show a significant
twofold increase in COL17A1 mRNA level compared to
normal control tissue (p =0.0046, Mann-Whitney U test,
n = 185; Fig. 3a). We next performed IHC on tissue micro-
arrays with 31 normal control tissues, 331 squamous cell
carcinomas (SCC), 27 adenocarcinomas, and 3 adenos-
quamous carcinomas. Normal cervix typically stains
weakly positive for collagen XVII (Fig. 3b). In contrast,
among cervical SCCs, collagen XVII staining ranges from

negative to strong. In addition, when positive, collagen
XVII expression is observed in a much larger proportion
of the cells as compared to normal tissue (Fig. 3c). In
comparison to normal cervix, a significantly higher frac-
tion of SCCs stains positive (68% (21/31) and 82% (273/
331), respectively; p = 0.0442, Fisher’s exact test), moder-
ately to strongly positive (23% (7/31) and 44% (146/331),
respectively; p =0.0146), or strongly positive (0% (0/31)
and 20% (65/331), respectively; p =0.0016) (Table 2).
Among cervical adenocarcinomas and adenosquamous
carcinomas, the fractions of positive and strongly positive
samples were also increased, respectively. However, these
increases were not statistically significant (Table 2).

Collagen XVII overexpression is a marker for local
metastasis in cervical cancer

We also investigated collagen XVII staining in relation to
lymph node status and distant metastasis. Only two of the
patients were diagnosed with distant metastasis, thus pre-
venting us from evaluating this parameter. However,
among the three cancer types, the fraction of tumors that
stained positive for collagen XVII in lymph node-positive
cervical cancers was consistently higher than that fraction
in lymph node-negative tumors (Table 3). Overall, in-
creased collagen XVII expression is significantly associ-
ated with an increase in local metastasis (81% (258/320) vs
94% (33/35); p = 0.0293, Fisher’s exact test; Table 3).

In breast cancer, the COL17A1 promoter is hypermethylated
and this correlates with reduced gene expression

The misexpression of collagen XVII in breast and cer-
vical cancers in opposite directions, both at mRNA and
at protein levels, prompted us to investigate whether
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Table 1 Collagen XVII a1l expression in normal, hyperplastic, and tumor breast tissue

Variable Number positive/total (%) p value vs normal®® Other (p value)*®
All samples
Normal breast 24/57 (42)
Hyperplasia 11/20 (55) 0.2308
Ductal carcinoma 33/150 (22) 0.0038
Grade
1 4/34 (12) 0.0019
2 25/102 (25) 0.0174
3 2/10 (20) 0.1665
Stage
I 0/6 (0) 0.0480 1711 vs 111/VI (0.0287)
I 29/105 (28) 0.0452
/11 29/111 (26) 0.0273
M1 4/33(12) 0.0024
v 0/6 (0) 0.0480
v 4/39 (10) 0.0005
Tumor invasion
T 2/8 (25) 0.3015 T1/2 vs T3/4 (0.0143)
T2 25/89 (28) 0.0587
T1/T2 27/97 (28) 0.0512
T3 4/28 (14) 0.0084
T4 2/25 (8) 0.0015
T3/T4 6/53 (11) 0.0002
Nodal status
NO 25/98 (26) 0.0254 0vs 1(0.1625)
N1 6/38 (16) 0.0057 0/1 vs 2/3 (0.3657)
N2 2/12.(17) 0.0894
N3 0/2 (0) 03477
Metastasis
MO 33/146 (23) 0.0052 MO0 vs M1 (0.3659)
M1 0/4 (0) 0.1266
Estrogen receptor status
ER+ 13/63 (21) 0.0093 ER+ vs ER— (0.5000)
ER— 15/78 (19) 0.0035
Progesterone receptor status
PR+ 11/44 (25) 0.0562 PR+ vs PR— (0.2177)
PR- 17/96 (18) 0.0011
HER2 status
HER2- 4/32 (13) 0.0031 HER2— vs HER2+ (0.1702)
HER2+ 24/108 (22) 0.0068
Age/menopausal status
<48 21/71 (30) 0.0988 <48 vs 248 (0.0268)
48-54 6/37 (16) 0.0040 <51 vs 251 (0.0218)
>54 6/42 (14) 0.0024 <54 vs 254 (0.0480)

<48 vs 254 (0.0263)

®Calculated by Fisher's exact test
b5 values in italic font remain statistically significant after accounting for multiple testing using a false discovery rate (FDR) of 5% [40]
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Fig. 3 Collagen XVII is overexpressed in cervical cancer. a COL17A1 is overexpressed twofold in the TCGA cervical cancer dataset. p values: t test.
b, ¢ Tissue microarrays with 31 normal control cervical tissue samples (b) and 331 cervical squamous cell carcinomas, 27 cervical adenocarcinomas,
and 3 cervical adenosquamous carcinomas (c) were stained with an anti-collagen XVII antibody. Numbers of samples in each category, as well as the
total number of samples, are indicated. Percentages indicate frequencies of observations per row. Scale bar, 50 um

changes in allelic copy numbers could provide an explan-
ation for this. We used SNP array GISTIC copy number
data and RNAseq data from the respective TCGA studies
[21, 22]. While the majority of the breast cancers (61%
(657/1075)) had retained two copies of the COLI7AI
locus, nearly a third, 31% (329/1075), lost one or both al-
leles. This led to a significant reduction of COLI7A1

mRNA levels compared to diploid tumors (p < 0.0001,
Mann-Whitney U test), whose levels were already signifi-
cantly lower than in normal breast tissue (n=112; p<
0.0001; Fig. 4a). Interestingly, despite the fact that the
remaining 8.3% (89/1075) of the tumors had gained extra
copies of the COL17A1 locus, their mRNA levels were sig-
nificantly lower than those in diploid cancers (p = 0.0218).

Table 2 Collagen XVII a1l expression in normal cervix and cervical tumor tissues

Tissue Total number of Positive  p value vs Moderate or strong  p value vs Strong  p value vs
samples (%) normal®® (%) normal®® (%) normal®®

Normal cervix 31 21 (68) 7 (23) 0 (0)

Squamous cell 331 273 (82)  0.0442 146 (44) 0.0746 65 (20) 0.0016

carcinoma

Adenocarcinoma 27 19 (70) 0.5283 5(19) 04769 0(0) 1.0000

Adenosguamous 3 2 (67) 0.7040 2 (67) 0.1644 1 (33) 0.0882

carcinoma

@Calculated by Fisher's exact test

bp values in italic font remain statistically significant after accounting for multiple testing using a false discovery rate (FDR) of 5% [40]
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Table 3 Collagen XVII al expression in relation to lymph node status in cervical cancer

Variable Total Lymph node-negative: Lymph node-positive: p value®
Stained positive (%) Stained positive (%)

Squamous cell carcinoma 325 242/295 (82) 28/30 (93) 0.0860

Adenocarcinoma 27 16/24 (67) 3/3 (100) 03313

Adenosquamous carcinoma 3 0/1 (0) 2/2 (100) 0.3333

All cancers 355 258/320 (81) 33/35 (94) 0.0293

®Calculated by Fisher's exact test

~
a c d
1.1 < 0979 o - 1.01
8 09 r P 1 = s
¢ 018 ' ' g 08 ‘éo_s-
3 0.15 & <
£ 2 074 ]
® 012 E £
g 2 5 0.64
£ 009 = a
T 0ad -
B 006 508 N e o
w 3 5044 - .
0.03 S 8 "le<00001 o *
0 ’ > & y & T T T T
Normal Al Hom. Het Diploid Gain Ampli- & ° ‘\@" &’b e&‘ 0 5 10 15
loss loss fication < s 9 S RNAseq normalized COL17A1
Tumor Tumor expression (log2)
n 112 1075 5 324 657 86 3 n 92 735 226 454 55
% 100 100 0.5 301 611 8.0 0.3 % 100 100 30.7 618 7.5
high normal (n=92) tumor (n=735)
cg08509991
©g13553455
low €913448625
€ 25- g § 09 h 107
5 S 08{-+ 3
‘B 2.0 E3 & > 08
@ 2 07 £
= ] c | il g
° § 051 £
2 1.0 a € p44
S =~ 0.4 a0
= < -
S 05 = 03 S
% 05 3 0.3 - 0.24
- © 02 3 p<0.0001 .
0.0~ p—— , ¢ ® &S 04—
Nomal Al Hom. Het. Diploid Gain Ampli- ‘ﬁ\“ o o : T 3 & 8 12 15 1
loss _ loss fication Y ) 30389 518
Tumor —Tumor RMNAseq normalized COL17A1
n 3 189 0 5 12 10 0 n 3 189 57 122 10 expression (1og2)
% 100 100 0 302 648 5.3 0 % 100 100 30.2 646 53
high normal (n=3) tumor (n=189)
cg08509991
¢g13553456
low ©g13448625
Fig. 4 The COL17AT promoter methylation status predicts the direction of misexpression in breast and cervical cancer. a COLT7AT allelic copy
number gains and losses in relation to normalized COL17AT1 expression level. Data are extracted from TCGA breast cancer RNAseq V2 RSEM and
SNP6 array GISTIC copy number datasets. Error bars represent standard error of the mean. p values: Mann-Whitney U test. b Heat map of the
degree of promoter methylation based on f3 values for each indicated probe. Each three-probe column corresponds to a sample. Data were
extracted from the TCGA lllumina Infinium HumanMethylation450 breast cancer dataset [21, 22]. ¢ Box plot for COL17AT promoter methylation
comparing normal samples to all samples, as well as to samples with indicated allelic copy numbers. Whiskers represent 10-90 percentiles of the
data. p values: Mann-Whitney U test. d Scatter plot of COL17AT promoter methylation compared to normalized COLT7AT gene expression. p value
for linear regression line: Spearman correlation. e~h Graphs as in (a—d), respectively, for cervical cancer. Data were derived from the TCGA cervical
dataset. p value summaries: n/s not significant; *p < 0.05; **p < 0.01; ****p < 0.0001
J




Thangavelu et al. Clinical Epigenetics (2016) 8:120

The observation that copy number changes do not
have a major impact on COLI7A1 expression levels in
breast cancer suggests that additional mechanisms regu-
late this gene’s expression. Tumor cells may silence gene
expression through promoter hypermethylation [24].
Hence, we compared the COL17A1 promoter methyla-
tion status in normal breast and breast cancer samples
using TCGA DNA methylation data [21, 22] (Additional
file 1: Figure S2 and Additional file 2). This revealed that
the COL17A1 promoter is indeed hypermethylated in
breast tumors (1 =735 tumors, n =92 normal samples;
p<0.0001, Mann-Whitney U test; Fig. 4b, c¢) and this
hypermethylation is independent of COLI7AI allelic
copy number variations (p < 0.0001; Fig. 4c). In addition,
there is a strong negative correlation between COLI7A1
promoter methylation and gene expression (Spearman p
<0.0001; Fig. 4d). Taken together, these analyses suggest
that reduced COLI7A1 expression in breast cancer is
caused by hypermethylation of the COL17A1 promoter.

In cervical cancer, the COL17A1 promoter is hypomethylated
and this correlates with increased gene expression

In cervical cancer, the COLI7A1 locus was less fre-
quently subject to copy number changes than in breast
cancer (Fig. 4e). When copy number alterations did
occur, this did not affect its expression (Fig. 4e). In con-
trast, the COLI7A1 promoter was considerably hypo-
methylated compared to normal tissue (# =189 tumors,
n =3 normal samples; p < 0.0001, Mann-Whitney U test;
Fig. 4f, g). This occurred irrespective of allelic copy
number changes (p <0.0035; Fig. 4g), and COL17A1 ex-
pression strongly correlated inversely with the degree of
methylation of its promoter (Spearman p <0.0001;
Fig. 4h). These data strongly suggest that increased
COL17A1 expression in cervical cancer is caused by hy-
pomethylation of the COL17A1 promoter.

The COL17A1 promoter methylation status accurately
predicts the direction of misexpression in epithelial
cancers

Interestingly, collagen XVII overexpression is observed
by IHC in various other cancers, including skin SCC,
melanoma, non-small cell lung cancer, lung adenocarcin-
oma, lung SCC, and head and neck SCC [15, 16, 25-28].
This led us to also investigate the promoter methylation
status for these cancers. For the former three, TCGA data
were either not available or the low number of normal
samples (n=2) precluded accurate analysis. For the
remaining cancers, we find that the degree of COL17A1
promoter methylation is significantly reduced in the
tumor samples (n=516, n=435, n=361, respectively)
compared to normal control samples (=50, n =29,
n =41, respectively; p <0.0002, Mann-Whitney U test;
Fig. 5a—c). In addition, similar to breast and cervical
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cancer (Fig. 4d, h), the degree of promoter methyla-
tion highly significantly correlates inversely with gene
expression for these cancers (p<0.0008, Spearman
correlation; Fig. 5d—f). Thus, the COLI7AI1 promoter
methylation status accurately predicts the direction of
the misexpression of collagen XVII in five out of five
cancer types. This indicates that the differential
COL17A1 promoter methylation dictates whether collagen
XVII is under- or overexpressed in these epithelial cancers
(p = 0.0313, binomial test).

Absolute levels of COL17A1 expression differ between
normal and tumor tissues of different origin

We observed that COL17A1 is underexpressed in breast
cancer and overexpressed in cervical and other epithelial
cancers. This raises the possibility that the absolute
COL17A1 levels are similar in different cancers while
the basal COL17A1 levels are high in normal breast tis-
sue and low in other normal epithelia. To test this hy-
pothesis, we directly compared the absolute COL17A1
mRNA levels in the five tumor types and the respective
matched normal control tissues investigated above
(Fig. 5g). This scenario seemed to apply when we com-
pared breast to lung. Specifically, COL17A1 levels in
breast carcinomas and lung adenocarcinomas are similar,
while the COL17A1 levels are highest in normal breast
tissue and lowest in normal lung tissue (Fig. 5g). Gener-
ally, however, this is not the case. For instance, head and
neck SCCs express significantly higher levels than nor-
mal breast tissue (p < 0.0001, Mann-Whitney U test; n =
497 and n =112, respectively). Also, in normal cervix,
COL17A1 levels do not significantly differ from those in
breast carcinoma (p = 0.1417, Mann-Whitney U test; n =
3 and n =1041, respectively), whereas the levels in nor-
mal cervix are significantly lower than in normal breast
tissue (p =0.0027, Mann-Whitney U test; n=3 and n =
112, respectively; Fig. 5g). Thus, while COL17A1 misex-
pression is common in epithelial cancers, the absolute
COL17A1 levels vary widely between and among tumors
and matched normal samples of different tissue origin.

Discussion

We systematically assessed the potential involvement of
all 44 collagens in breast cancer progression and metas-
tasis. This analysis identified overexpression of COL4Al
and COL4A2 as strong independent markers. However,
independent assessment using TCGA RNAseq data did
not validate this observation. At the protein level, a
number of collagens, including collagens I, III, IV-al,
IV-a2, and V, are differentially expressed in breast can-
cer [29, 30]. This seeming discrepancy could be ex-
plained by the fact that our assessment is based on
mRNA rather than on protein levels. Alternatively,
sample-averaged mRNA levels could mask important
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Fig. 5 (See legend on next page.)
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Fig. 5 The COL17AT promoter is hypomethylated in head and neck and lung cancers. a—c Methylation status of the COL17AT promoter in head
and neck squamous cell carcinoma (SCQ), lung adenocarcinoma, and lung SCC using the respective TCGA datasets [41-43], as in Fig. 4c. p values:
Mann-Whitney U test. d—f Scatter plots of COL17AT promoter methylation compared to normalized gene expression for indicated cancer types, as in
Fig. 4d. p values: Spearman correlation for linear regression. g Box plot comparing the absolute COL17A1 mRNA levels in five epithelial tumor types
and their respective matched normal control tissues. Data were extracted from TCGA RNAseq datasets [21, 22, 41-43]. N normal tissues, T tumor tissues.
Sample numbers are indicated below each box. p values: Mann-Whitney U tests. p value summaries: **p < 0.01; **p < 0.001; ***p < 0.0001

differences in the local distribution of collagens within
tumors, as observed for collagens IV, XV, and XIX in
invasive ductal carcinomas [31]. Nevertheless, our ap-
proach led us to identify reduced COLI7AI mRNA
levels as a strong independent prognostic marker in
breast cancer development and this was not only sus-
tained at the protein level, but it was also strongly asso-
ciated with advanced stage, increased invasion, and
postmenopausal status.

We find that collagen XVII is underexpressed in breast
cancer, while it is overexpressed in various other cancers,
including cervical cancer, as we show here, and skin
SCC, melanoma, head and neck SCC, non-small cell
lung cancer, lung adenocarcinoma, and lung SCC, as
previously described [15, 16, 25-28]. The cancer type-
specific misexpression in opposing directions is not
unique for collagen XVII. Collagen XI is expressed at
high levels in human gliomas [10], colorectal cancer
[11], and ovarian carcinoma [12] but at low levels in
breast cancer [13]. Also, collagen XI protein-level ex-
pression positively correlates with ovarian cancer metas-
tasis, but it inversely correlates with breast cancer
metastasis [12, 13].

It is well established that differential DNA methylation
in promoter regions causes misexpression of genes in
cancer [32]. Collagen gene expression is altered in this
manner in various cancer types [33-35]. However, to
our knowledge, this is the first study that links the can-
cer type-specific, opposed direction of the misexpression
of any collagen gene to cancer type-specific epigenetic
alterations. It would be interesting to see if differential
promoter methylation of other collagen genes, such as
those encoding collagens XI-al and XI-a2 [10-13],
could similarly explain opposed misexpression in distinct
cancer types.

While consistent with epigenetic alterations, it remains
paradoxical that both reduced collagen XVII expression
in breast cancer and increased collagen XVII expression
in other cancers are associated with increased tumor cell
invasion and metastasis [15, 16, 25-28]. We investigated
the possibility that the absolute COL17Al levels are
similar in different cancers while the normal COL17A1
levels are high in normal breast tissue and low in other
normal epithelia. However, the absolute COL17A1 levels
vary widely between various tumor types, as well as be-
tween various normal tissues. The different ratios between

the numbers of basal and non-basal cells in different tis-
sue types could partly account for that. Alternatively, or
additionally, changes in the expression of one particular
collagen gene could be compensated for by changes in the
expression of other collagen genes.

In any case, our observations suggest that the expres-
sion of collagen XVII needs to be maintained at a tissue
and cell type-specific normal level to prevent invasion.
This thesis is supported by several previous observa-
tions. In keratinocytes, complete loss of Coll7al expres-
sion increases cell motility [36] and partial reduction of
COL17A1 levels promotes undirected motility [37].
Conversely, collagen XVII expression is increased at the
leading edge during wound healing [38] and at the inva-
sive front of carcinomas [15], suggesting that it promotes
motility. Consistently, COL17A1 supports directed migra-
tion by stabilizing actin bundles, which generates traction
forces [37]. Together, this suggests that cancer cells may
increase the invasive potential by either up- or downregu-
lating collagen XVII expression.

Conclusions

In conclusion, we identify breast cancer as the first type
of cancer in which collagen XVII expression is underex-
pressed. We also find that the promoter methylation sta-
tus correctly predicts whether collagen XVII is over- or
underexpressed in various epithelial cancers. The under-
expression in breast cancer is associated with increased
invasion, while overexpression in other cancer types is
also associated with increased invasion and metastasis.
Functional studies are needed to mechanistically explain
how collagen XVII overexpression affects cell motility,
and its direction, and promotes tumor cell invasion and
metastasis. However, our study has significant clinical
implications, as it suggests that epigenetic targeting of
COL17A1 could represent a novel strategy to prevent
metastasis in patients.

Methods

Clinical prognostic analyses

Data from 26 previously published breast cancer datasets
were used to study the potential association between ex-
pression of each of the 44 collagen genes and distant
metastasis-free survival, as described [23, 39]. Briefly,
datasets were combined and statistical significance was
determined according to a Cox proportional hazard
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model with 95% confidence interval (CI). Additional
tests, according to Adjuvant! and the Nottingham
Prognostic Index, were performed as described [17, 18].
Survival analyses were performed using a single clinical
feature at a time, ie., distant metastasis-free survival,
recurrence-free survival, or overall survival, and by
splitting the gene expression in tumors into below
(low) and above (high) the median expression level,
as described [19, 39]. Statistical analyses were per-
formed using log-rank Mantel-Cox tests.

Validation analyses

Validation analyses for COL4A1, COL4A2, and COLI17A1
gene expression in breast cancer were performed using
28 datasets, as previously described [19, 20]. In addition,
the TCGA (The Cancer Genome Atlas) breast cancer
and cervical cancer Illumina HiSeq RNA Seq V2
(RSEM-analyzed) datasets [21, 22] were used to compare
COL17A1 expression levels in matched normal control
to breast and cervical cancer samples. Statistical analyses
were carried out using ¢ tests. Validation analyses for pa-
tient survival (distant metastasis-free survival, recurrence-
free survival, and overall survival) were performed using
probe 204636_at and the median as the cut-off between
low and high expression, as described [23]. Log-rank tests
were used to assess statistical significance.

Immunohistochemistry

Paraffin-embedded breast cancer and cervical tissue mi-
croarrays (TMAs) were obtained from US Biomax Inc.
(MD, USA). Samples were obtained under the Health In-
surance Portability and Accountability Act (HIPAA)-ap-
proved protocols, in accordance with the approved
guidelines and with informed consent from the donors.
For the breast cancer analysis, only patients with ductal
carcinoma pathology were included. However, no inclu-
sion or exclusion criteria were applied based on treat-
ments received. Cores were 5 um thick and had a 1 mm
diameter. TMAs were sectioned and stored at 4 °C until
use. TMA slides were baked at 60 °C for 30 min, incu-
bated in 100% xylene for 10 min for de-paraffinization,
and incubated in ethanol series (100, 90, and 70%) and
milliQ water for 10 min each for rehydration. For anti-
gen retrieval using sodium citrate buffer (10 mM sodium
citrate, 0.05% Tween-20, pH 6.0), slides were placed in a
water bath, microwaved for 5 min (at P100/high), cooled
for 5 min at room temperature (RT), and microwaved
for 5 min. Slides were then cooled under tap water for
6 min, washed 2 x 5 min with PBS, and permeabilized in
PBS/0.01% Triton-X for 10 min. Following 2 x 10 min
PBS washes and 1 h incubation in blocking buffer (PBS/
10% EBS), slides were incubated in blocking buffer with
primary anti-collagen XVII antibody (clone 9G2, 1:100
dilution) [15] overnight at 4 °C, incubated at RT for
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20 min, washed 2 x5 min with PBS, blocked for en-
dogenous peroxide in PBS/0.3% H,O, for 10 min,
washed 2x5 min with PBS, incubated with HRP-
conjugated goat anti-mouse I1gG (H + L) secondary anti-
body (Invitrogen, 62-6520) in blocking buffer for 1 h,
followed by 2 x 10 min PBS washes. TMAs were then
stained with 3,3'-diaminobenzidine (DAB) reagent
(DBC859, Biocare Medical) and counter-stained with
hematoxylin. Stepwise dehydration occurred in an etha-
nol series (70, 90, and 100%; 2 min each), followed by
9 min baking at 60 °C and incubation in 100% xylene for
2 min. Slides were mounted using Permount and dried
overnight. Slides were imaged using Olympus Slide scan-
ner VS120 (rm4026) and OlyVia software. Tissue sec-
tions were excluded from the analyses if chronic mastitis
(breast), chronic inflammation/cervicitis, or cataplasia
(cervix) was diagnosed or if more than 70% of the sec-
tion was missing. Slides were independently scored by
two individuals and in a blinded fashion. Clinical end-
points examined included pathology, age, grade, stage,
tumor invasion, lymph node status, metastasis and estro-
gen (ER), progesterone (PR), and HER2 receptor status.
Fisher’s exact tests were used for statistical analyses. In
addition, we controlled for multiple testing by subjecting
our analyses to a false discovery rate (FDR) of 5%, as
previously described [40]. Where clinical data were miss-
ing for individual samples, these were excluded from the
analyses involving the missing data, but included in ana-
lyses of other variables for which data were present. The
clinicopathological details and standard prognostic vari-
ables of all patient samples subjected to immunohisto-
chemistry are included in Additional file 1: Tables S2
and S3 for breast ductal carcinoma and cervical cancers,
respectively.

Allelic copy number variation and RNAseq analysis

Putative COLI17AI1 allelic copy numbers were deter-
mined using Affymetrix Genome-Wide SNP6.0 Array
datasets and GISTIC 2.0. RNAseq data, obtained from
the TCGA breast cancer, cervical cancer, head and neck
SCC, lung adenocarcinoma, and lung SCC Illumina
HiSeq RNA Seq V2 (RSEM) datasets [21, 22, 41-43].
For each patient, copy number data and gene expression
were combined and expression levels were plotted for
each copy number category. Nonparametric Mann-
Whitney U tests were used to compare differences.

Promoter methylation analyses

For COL17A1 promoter methylation analyses, Illumina
Infinium HumanMethylation450 platform level 3 data
were used from the respective TCGA cancer datasets
[21, 22, 41-43]. For each sample, /3 values for all probes
in the region from 400 bp upstream to 400 bp downstream
of the COLI7AI transcription start site (chromosome 10/
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hgl9 genomic coordinate 105845638) were used
(Additional file 2). These probes were: cgl3553455
(10/105846002), cg08509991 (10/105845720), and
cgl3448625 (10/105845238). The probes are located at
positions -364, -82, and +400 relative to the COLI7A1
transcription start site (TSS; see also Additional file 1:
Figure S2). For each sample, the average of the f
values was calculated and used. Data were not nor-
mally distributed, as determined by the D’Agostino
and Pearson omnibus normality test p < 0.05. There-
fore, nonparametric Mann-Whitney U tests were used
to compare differences. RNAseq data from the re-
spective TCGA datasets, as described above, were
used to compare promoter methylation to gene ex-
pression. For linear regression, Spearman correlation
analyses were used.

Additional files

Additional file 1: Supplementary Material containing Table S1
(Prognostic strength of misexpression of collagen genes in breast cancer),
Table S2 (Clinicopathological features of the breast cancer patients
analyzed by immunohistochemistry), Table S3 (Clinicopathological
features of the cervical cancer patients analyzed by
immunohistochemistry), Figure S1 (H&E stained sections of
corresponding samples shown in Fig. 2), Figure S2 (Schematic of the
promoter and 5" end of the COLT7AT gene), and Supplementary
References. (PDF 1136 kb)

Additional file 2: COL17AT promoter methylation levels (3-values, TCGA
[llumina Infinium Human Methylation 450). (XLSX 231 kb)
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