293 research outputs found

    The correlates of urinary albumin to creatinine ratio (ACR) in a high risk Australian Aboriginal community

    Get PDF
    Background: Albuminuria marks renal disease and cardiovascular risk. It was estimated to contribute 75% of the risk of all-cause natural death in one Aboriginal group. The urine albumin/creatinine ratio (ACR) is commonly used as an index of albuminuria. This study aims to examine the associations between demographic factors, anthropometric index, blood pressure, lipid-protein measurements and other biomarkers and albuminuria in a cross-sectional study in a high-risk Australian Aboriginal population. The models will be evaluated for albuminuria at or above the microalbuminuria threshold, and at or above the "overt albuminuria" threshold with the potential to distinguish associations they have in common and those that differ

    Cherenkov radiation control via self-accelerating wave-packets

    Get PDF
    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a “cone”, making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system

    Insight into Microevolution of Yersinia pestis by Clustered Regularly Interspaced Short Palindromic Repeats

    Get PDF
    BACKGROUND: Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis. METHODOLOGY/PRINCIPAL FINDINGS: Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes. CONCLUSIONS/SIGNIFICANCE: CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate

    Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking

    Get PDF
    In this work we discuss how to use photophysical information for improved quantitative measurements using Photo Activated Localization Microscopy (PALM) imaging. We introduce a method that reliably estimates the number of photoblinking molecules present in a biological sample and gives a robust way to quantify proteins at the single-cell level from PALM images. We apply this method to determine the amount of β2 adrenergic receptor, a prototypical G Protein Coupled Receptor, expressed on the plasma membrane of HeLa cells

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation

    Get PDF
    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism

    Alcohol, metabolic risk and elevated serum gamma-glutamyl transferase (GGT) in Indigenous Australians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interaction between overweight/obesity and alcohol intake on liver enzyme concentrations have been demonstrated. No studies have yet examined the interaction between metabolic syndrome or multiple metabolic risk factors and alcohol intake on liver enzymes. The aim of this study was to examine if alcohol consumption modifies the effect of metabolic risk on elevated serum GGT in Indigenous Australians.</p> <p>Methods</p> <p>Data were from N = 2609 Indigenous Australians who participated in a health screening program in rural far north Queensland in 1999-2000 (44.5% response rate). The individual and interactive effects of metabolic risk and alcohol drinking on elevated serum GGT concentrations (≥50 U/L) were analyzed using logistic regression.</p> <p>Results</p> <p>Overall, 26% of the population had GGT≥50 U/L. Elevated GGT was associated with alcohol drinking (moderate drinking: OR 2.3 [95%CI 1.6 - 3.2]; risky drinking: OR 6.0 [4.4 - 8.2]), and with abdominal obesity (OR 3.7 [2.5 - 5.6]), adverse metabolic risk cluster profile (OR 3.4 [2.6 - 4.3]) and metabolic syndrome (OR 2.7 [2.1 - 3.5]) after adjustment for age, sex, ethnicity, smoking, physical activity and BMI. The associations of obesity and metabolic syndrome with elevated GGT were similar across alcohol drinking strata, but the association of an adverse metabolic risk cluster profile with elevated GGT was larger in risky drinkers (OR 4.9 [3.7 - 6.7]) than in moderate drinkers (OR 2.8 [1.6 - 4.9]) and abstainers (OR 1.6 [0.9 - 2.8]).</p> <p>Conclusions</p> <p>In this Indigenous population, an adverse metabolic profile conferred three times the risk of elevated GGT in risky drinkers compared with abstainers, independent of sex and ethnicity. Community interventions need to target both determinants of the population's metabolic status and alcohol consumption to reduce the risk of elevated GGT.</p
    corecore