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Abstract: Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family
Acetobacteriaceae, widespread in sugary, acidic and alcoholic niches. They are known
for their ability to partially oxidise a variety of carbohydrates and to release the
corresponding metabolites (aldehydes, ketones and organic acids) into the media.
Since a long time they are used to perform specific oxidation reactions through
processes called "oxidative fermentations", especially in vinegar production.
In the last decades physiology of AAB have been widely studied because of their role
in food production, where they act as beneficial or spoiling organisms, and in
biotechnological industry, where their oxidation machinery is exploited to produce a
number of compounds such as L-ascorbic acid, dihydroxyacetone (DHA), gluconic acid
and cellulose. The present review aims to provide an overview of AAB physiology
focusing carbon sources oxidation and main products of their metabolism.

Response to Reviewers: Answers to Reviewers

Thank you very much for all your comments and suggestions, stronghly contributed to
improve the manuscript. Below a detailed response for each point raised out is
provided.

Reviewer #1:
This review describes acetic acid bacteria focusing on their metabolism. It is a concise
overview of the acetic acid bacteria involved in food fermentation, particularly vinegar
production.
A few things that should be considered to improve the review:

- Emphasis on recent taxonomy (a lot of research has been done on AAB taxonomy in
the last 5-10 years)
- Figure would be good (eg reaction of ethanol to acetic acid with the various enzymes)
- Biotechnology needs to be expanded more
- VBNC needs to be brought out more in the cultivation section
- English expression and language  should be checked

We have fully considered the criticisms raised out by the rewiever and accordingly the
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manuscript was revised.

Recent taxonomy has been added to the paragraph “General characteristics” that in
this new version of the manuscript has been renamed as follow:
“General phenotypic characteristics and taxonomic aspects of acetic acid bacteria”
As suggested, a figure (Fig.1) showing ethanol oxidation by ADH and ALDH and
location within the cell has been added.

Biotechnological applications of AAB has been expanded more (p. 2 lines 1-23).

As suggested, the paragraph “Isolation and cultivability” was modified and VBNC
concept  added (p.5, lines 11-15)

The whole manuscript has been revised and a thoroughly English revision has been
done.

Specific comments:
Abstract
- use biotechnology rather than biotech
The term was corrected

P3, L7 - assigned rather than allocated
Allocated has been replaced by “assigned” (p.3, line 13), as suggested.

P3, L12 & 14  - write ethanol (EtOH) or acetic acid (AcOH) and then use abbreviation
The correction has been done.

P3, L23 - surface layer
Superficial has been replaced by “surface” (p. 1, line 14)

P4, L1 - acetic acid production is not a fermentation
The sentence was corrected:
AcOH fermentation was replaced by “ AcOH production”

P4, L5 - AAB are involved in these other food productions, not only implicated
Implicated was replaced by involved, as suggested.

Page 5 - what is the significance of 1996 in regards to these various foods and the
bacteria isolations?
The whole sentence was removed.

Reference is needed for 'Early researchers....'
The reference was added [35] : Dupuy P (1952) Recherche d'une technique
d'isolement des Acetobacter du vin. Ann Technol Agric 1:107-112 (p.5. L.19)

Page 6 L 10-15 - this section a few more sentences to explain these statements better.

Lines 14-15: why the difference? Explain the significance between the two versions.

To clarify, we removed the second part of the sentence: “Whereas previous edition of
Bergey's Manual [25] recommended the use of a simple medium containing 0.5%
yeast extract, 1.5% EtOH, and 2.5% agar.”
In the new version of the manuscript, the sentence reports only the medium of the last
version of bergey’s manual (p. 8, L: 5-9) “The last edition of Bergey's Manual of
Systematic Bacteriology [1] proposed standard medium for enrichment and isolation of
AAB, with the exception of Ga. europaeus (which strains are AcOH-dependent),
containing: D-glucose, 0.05%; EtOH, 1.5%; yeast extract, 0.5%; peptone, 0.3%;
cycloheximide, 0.01%; and agar, 0.12%.”

 Page 7 L 6-11 - this whole section needs a bit of rearranging.  These lines should be
at the start of the section
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The paragraph “Isolation and cultivation” was rearranged. The sentence was simplified
and put at the start of paragraph “Isolation and cultivation of AAB strains, especially
from fermented beverages, have been described to be problematic, giving rise to an
underestimation of species richness when culture dependent methods are applied
[31]”.

Lines 6-14 - this needs to expanded to explain these observations and statements.  It
is suggesting that now all bacteria are growing up/being cultivated. Is this viable but not
culturable (VBNC). Or poor growth medium? Highlight the difficulties in cultivating AAB
and all the AAB present.

The section was rearranged as follow:

p. 5, lines 11-17 “ Low recovery of strains due to the fraction of population that could
reach a viable but non-culturable (VBNC) state has been stated. For instance in wine it
was shown that VBNC status of spoiling AAB is induced by O2 deprivation [32].
Whereas in vinegars some studies developed by no culture approaches, such as
PCR/DGGE, revealed higher species diversity respect to that detected by culturing
methods [33, 34, 3].
Limitations of culturing were in part overcame with the formulation of appropriate
media, which allowed the cultivation of no growing strains or slow growing strains.”

Page 8 L 1-8 : it would be a good idea to have a figure here for the reaction and
enzymes, their location .... . It is always beneficial in a review to have a figure.

As suggested, a figure (Fig.1) showing ethanol conversion and location of enzymes
within the cell has been added. The figure rapresents the ethanol oxidation to acetic
acid by the membrane-bound ADH and ALDH and cytoplasmic respiration of ethanol.

P9 L 15 - ... were present in the strain. ....  The genes were present, but was it shown
that the pathways were functioning.  Genomics show that genes are present but do not
confirm that reactions are occurring.

The sentence was removed.

P 10 L 7 - High in what sense? Concentration? Structure?
P 10 L 9 - ..... wide range of applications. ..... This does not make sense or belong
here.
To avoid repetition the sentence (p.10, L.6-9) was removed.
The sentence reported in the new version of manuscript is at page 9, lines: 14-18
“The most characteristic reaction is the direct oxidation of glucose into Glucono-δ-
lactone, which is oxidized into gluconic acid. This reaction is particularly active in
Gluconobacter growing at high concentrations of sugars. D-gluconate can be further
oxidized to 2-ketogluconate and 2,5-diketogluconate by the gluconate dehydrogenase
and 2-ketogluconate dehydrogenase [52].”

P 10 L 14 - last sentence Is this important for high production of vitamin C?

The sentence was removed.

P 11 L 1-5 - another sentence or two to expand this concept would be beneficial for the
reader.
To clarify the sentence was rewritten as follow (p. 10, Lines 14-17):
“In G. oxydans it was reported that oxidization of glycerol is catalized by the
membrane-bound glycerol/sorbitol dehydrogenase. This quinoprotein is considered the
main polyol-dehydrogenase of G. oxydans that exhibits a broad substrate specificity. It
catalyzes the oxidation of D-sorbitol, gluconate, and glycerol to L-sorbose, 5
ketogluconate and DHA, respectively [54]. “
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P 13 L 6-7: this sentence needs to be reworded and explained better. What has been
reached?

P 13 L 11 - sugared is not a good word here. Rewrite using high sugar content.

In the new Conclusion section, the sentences were rewritten as follow:

“AAB are food-associated microorgansims that have a long history in oxidative
fermentation processes, where they are spoiling or beneficial organisms. The
physiological uniqueness of AAB is due to their ability to partially oxidize carbon
sources and quantitatively excrete the corresponding compounds in the surrounding
media. This feature, besides vinegar, is exploited for the industrial production of a
number of compounds from alcohols, sugar and sugar alcohols oxidation. Moreover
they are considered promising for the production of the pure form of cellulose.
Although the valuable potential of AAB in biotechnological applications, their industrial
exploitation is not full developed.
Perspectives to enhance their role as biocatalysts include the availability of genetic
stable strains and further advance on their metabolic potential, in order to obtain high
carbon substrates conversion efficiency.”

Table 1.
In the legend write AAB in full.  At the top of the table, it would be much better to have
at least abbreviations of the genera rather than numbers. It would make it much easier
for the reader.

AAB was replaced by acetic acid bacteria, as suggested.
Number were replaced by abbreviations.
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Abstract  1 

Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family 2 

Acetobacteriaceae, widespread in sugary, acidic and alcoholic niches. They are known for 3 

their ability to partially oxidise a variety of carbohydrates and to release the corresponding 4 

metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they 5 

are used to perform specific oxidation reactions through processes called “oxidative 6 

fermentations”, especially in vinegar production.  7 

In the last decades physiology of AAB have been widely studied because of their role in 8 

food production, where they act as beneficial or spoiling organisms, and in 9 

biotechnological industry, where their oxidation machinery is exploited to produce a 10 

number of compounds such as L-ascorbic acid, dihydroxyacetone (DHA), gluconic acid 11 

and cellulose. The present review aims to provide an overview of AAB physiology 12 

focusing carbon sources oxidation and main products of their metabolism.   13 

 14 

Keywords: acetic acid bacteria, oxidative fermentation, cellulose, Acetobacter, 15 

Gluconacetobacter, Gluconobacter oxydans 16 
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1  

Introduction  1 

Acetic acid bacteria (AAB) are strictly aerobic bacteria occurring in sugary, alcoholic and 2 

acidic niches such as fruits, flowers and particularly fermented beverages [1, 2, 3, 4]. 3 

Although foods are the most known sources of AAB, they play role as plant-associated 4 

bacteria (N2 fixing), symbionts of insects and human pathogens [5, 6].  5 

The metabolic potential of AAB in these environments is expressed by the partial 6 

oxidation of carbohydrates releasing the corresponding products (aldehydes, ketones and 7 

organic acids) into the surrounding media. Through processes called “oxidative 8 

fermentations”, AAB perform specific oxidation reactions and channel the released 9 

electrons to molecular oxygen. Due to these ability they are known since a long time 10 

especially for their role in vinegar production [7].  11 

Vinegar, an aqueous solution of acetic acid (AcOH) that is produced by AAB from a dilute 12 

ethanol (EtOH) solution [8], was the first investigated environment concerning the 13 

biological formation of AcOH. Early researches [9] allowed to recognize that the surface 14 

layer during vinegar formation, commonly known as “mother of vinegar”, was a mass of 15 

living microorganisms causing AcOH production.  16 

AAB are also involved in the production of other foods, like palm wine [10], cocoa powder 17 

[11], nata de coco (a fermented food from coconut), pulque (a beverage from agave) and 18 

kombucha, a slightly acid and sparkling beverage obtained from tea fermentation by a 19 

symbiotic culture of AAB and yeasts [8]. 20 

They can spoil fermented beverages such as wine, cider and beer, where the production of 21 

AcOH is undesired [12], whereas in others foods, such as sourdough for bread production 22 

[13], AAB can occasionally occur contributing to the acidification of dough. 23 
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2  

Besides fermented foods, some AAB are used as biocatalysts for the industrial production 1 

of a range of compounds, making them important biocatalysts for the development of eco-2 

friendly fermentation processes as an alternative to the chemical synthesis. Strains of G. 3 

oxydans produce enzymes involved in amino acids synthesis e.g. glutamic and aspartic 4 

acids thanks to the incomplete set of tricarboxylic acid (TCA) enzymes which could 5 

function primarily for glutamate, aspartate and succinate biosynthesis [14].  6 

One of the most important biotechnological application of G. oxydans is the production of 7 

L-ascorbic acid (vitamin C) precursors such as L-sorbose from D-sorbitol and 2-keto-L-8 

gluconic acid from 2,5-Diketo-D-gluconic acid or L-Sorbosone [15]. 9 

Strains of G. oxydans are also exploited for the microbial production of DHA that is used 10 

in the pharmaceutical industry as a cosmetic tanning agent and also as an intermediate for 11 

the synthesis of various organic chemicals and surfactants [16]. 12 

Among organic acids, gluconic acid, used as a bulk chemical in the food,  textile, medical 13 

and construction industries can be produced by G. oxydans which oxidize glucose to 14 

gluconate by the membrane bound glucose dehydrogenase [17].  15 

Other applications of G. oxydans are the production of miglitol’s precursors, used as a 16 

therapeutic drug for the treatment of non-insulin-dependent diabetes mellitus; D-tagatose, 17 

used as a bulking agent in food and a non-calorific sweetener; and shikimate, which is a 18 

key intermediate for a number of antibiotics [16]. 19 

Species of Acetobacter and Gluconacetobacter genera, besides vinegar, are of interest in 20 

agricultural field, where especially strains of Ga. diazotrophicus have been proved useful 21 

for their role as N2 fixing bacteria [5]. Finally Ga. xylinus is well known for the ability to 22 

produce high amount of pure cellulose [18]. 23 
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On the basis of the increasing prospective on AAB for food, beverages and other 1 

biotechnological applications, this work aims to review physiology of AAB including 2 

carbon sources oxidation and metabolites production.   3 

General phenotypic characteristics and taxonomic aspects of acetic acid bacteria 4 

AAB are gram negative or gram-variable, non-spore forming, ellipsoidal to rod-shaped 5 

cells that can occur in single, pairs or in short chains. They could be motile due to the 6 

presence of peritrichous or polar flagella. Catalase positive and oxidase negative, AAB 7 

have an obligate aerobic metabolism, with oxygen as the terminal electron acceptor. The 8 

optimum pH for the growth is 5-6.5, while they can grow at lower values (3-4) [1]. Their 9 

optimum temperature vary between +28 and +30°C although some species are recognized 10 

as thermotolerant [19, 20]. They can produce pigments and also different kinds of 11 

exopolysaccharides [21]. Main distinctive traits of AAB are reported in Table 1.  12 

AAB are assigned to the family Acetobacteriaceae that belongs to the order 13 

Rhodospirillales as part of the Alphaproteobacteria, within the family Acetobacteraceae. 14 

At present they are represented by the following genera: Acetobacter, Acidomonas, 15 

Ameyamaea, Asaia, Gluconacetobacter, Gluconobacter, Granulibacter, Kozakia, 16 

Neoasaia, Neokomagataea, Saccharibacter, Swaminathania and Tanticharoenia.  17 

The most updated data on valid published species of each genus are reported by the List of 18 

Prokaryotic names with Standing in Nomenclature [22]. 19 

Since their first description as “vinegar bacteria”, about 150 years ago [9], classification of 20 

AAB has undergone robust changes, with scission, renaming, restoration and emendation 21 

of genera and species [23]. 22 

During the last decades studies on AAB identity and their phylogenetic relationships have 23 

been achieved by polyphasic approaches combining phenotypic, chemotaxonomic and 24 
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4  

genotypic data of strains. Both the use in a polyphasic strategy of 16S rRNA gene as 1 

molecular marker, and the formulation of more suitable isolation media, reflect the 2 

increased number of new described genera and species. 3 

However, identification at the species level is often difficult due to the low resolution 4 

power of phenotypic characterization and the high sequence similarity (≥ 99,5%) of 16S 5 

rDNA of  phylogenetically closely related species [24]. 6 

Weaknesses of phenotypic characterization are generated by a difficult standardisation of 7 

tests, in some cases by low number of discriminant characters and by instability of 8 

physiological traits of preserved strains [25]. 9 

For instance physiological deficiencies caused by inactivation of enzymes, such as the 10 

membrane-bound alcohol dehydrogenase (ADH) and cellulose synthase, deriving from 11 

genetic instability, can affect reliability of phenotypic assays. The main source of genetic 12 

instability has been attributed to mobile genetic elements, mainly transposons, widely 13 

distributed in the genome. Insertion sequences (IS) responsible for EtOH oxidation 14 

deficiency, like those of the family IS 12528, were found in the chromosome of A. 15 

pasteurianus NCIB 7214 (5 copies) [26], A. aceti 1023 (1 copy) and G. oxydans IFO 16 

12528 (10 copies). Likewise 100 copies of IS 1380 occur in A. aceti 1023 and 74 copies in 17 

A. pasteurianus NBRC 3283 [1, 27]. Also spontaneous cellulose deficient mutants due to 18 

the IS 1031 were detected in Ga. xylinus ATCC 23769 [28].  19 

Advances in taxonomy of AAB derive from the availability of full genome sequences 20 

especially of type strains, that allowed the application of new genomic approaches.  21 

To solve ambiguities of  phylogenetically closely related species, recently the use of 22 

different genes as phylogenetic markers, such as housekeeping genes (dnaK, groEL and 23 

rpoB) has been proved useful for AAB species differentiation [29]; whereas protein-coding 24 
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genes, such as those involved in the metabolism of AcOH, have been applied to investigate 1 

phylogenetic relationships among Acetobacter, Gluconacetobacter and Gluconobacter 2 

genera [30]. Since multigene analysis can resolve ambiguities in phylogenetic 3 

reconstructions when a single gene is not enough, it is expected that the availability of 4 

more complete genome sequences will increase the application of these approaches.  5 

 6 

Isolation and cultivability  7 

Isolation and cultivation of AAB strains, especially from fermented beverages, have been 8 

described to be problematic, giving rise to an underestimation of species richness when 9 

culture dependent methods are applied [31]. 10 

Low recovery of strains due to the fraction of population that could reach a viable but non-11 

culturable (VBNC) state has been stated. For instance in wine it was shown that VBNC 12 

status of spoiling AAB is induced by O2 deprivation [32]. Whereas in vinegars some 13 

studies developed by no culture approaches, such as PCR/DGGE, revealed higher species 14 

diversity respect to that detected by culturing methods [33, 34, 3].  15 

Limitations of culturing were in part overcame with the formulation of appropriate media, 16 

which allowed the cultivation of no growing strains or slow growing strains. 17 

A number of conventional culture media to isolate AAB from different sources are 18 

reported in literature, which carbon source are mainly glucose, mannitol and EtOH. Early 19 

researches proposed a variety of media containing yeast-glucose agar (pH 5.5-6.0), 20 

peptone-glucose agar fortified with yeast extract and tomato juice, and media containing 21 

EtOH (1.5%) as single carbon source, yeast extract (0.5%) and agar (2.5%) [35]. To 22 

control the growth of other bacteria and yeasts, these media can be acidified and/or 23 

supplemented with antibiotics and cycloheximide [36]. 24 
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A medium that allows successful isolation from different niches is glucose yeast extract 1 

carbonate (GYC) composed by D-glucose, 10%; yeast extract, 0.5%; peptone 0.3%; 2 

CaCO3, 0.12%; and agar, 0.12% [37]. After incubation, colonies of AAB are recognized by 3 

the surrounding zones of CaCO3 clearing. CaCO3 neutralizes AcOH generated by AAB, 4 

preventing physiological stress and cell death [25].  The last edition of Bergey's Manual of 5 

Systematic Bacteriology [1] proposed standard medium for enrichment and isolation of 6 

AAB, with the exception of Ga. europaeus (which strains are AcOH-dependent), 7 

containing: D-glucose, 0.05%; EtOH, 1.5%; yeast extract, 0.5%; peptone, 0.3%; 8 

cycloheximide, 0.01%; and agar, 0.12%.  9 

Important advances in recovering AAB strains from industrial vinegar have been reached 10 

introducing a double agar layer (0.5% in the lower layer and 1% in the upper layer) and 11 

media containing EtOH and AcOH, in an attempt to simulate the environment of the 12 

acetification tanks. Using this approach the new species Ga. europaeus isolated from 13 

industrial wine vinegar was described [38].  14 

It was also stated that isolates from cider or wine vinegar grew readily in Reinforced AE-15 

Medium (RAE), containing  D-glucose, 4.0%;  peptone, 1.0%; yeast extract, 1%; citric 16 

acid, 0.15%;  disodium hydrogen phosphate (Na2HPO4), 0.38%; glacial AcOH, 1 ml; 17 

absolute EtOH, 1 ml; agar, 0.5% upper layer; 1% bottom layer); pH 3.8. The simpler AE 18 

medium (glucose, 0.5%;  yeast extract, 0.3%;  peptone, 0.4%; agar, 0.9%; absolute EtOH, 19 

3 ml; glacial AcOH, 3 ml) has been proved suitable for the isolation of strains from spirit 20 

vinegars [39, 40].  21 

Actually, some of the most widely used isolation media are: GYC, AE; YPM 22 

medium (yeast extract, 0.5%; peptone, 0.3%; mannitol, 2.5%; agar, 1.2%) and MYA 23 

medium (malt extract, 1.5%; yeast extract, 0.5%; agar, 1.5%; and EtOH, 60 ml) [41].  24 
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Carbon sources  1 

Ethanol oxidation  2 

AAB partially oxidize EtOH by two successive catalytic reactions of the ADH and a 3 

membrane-bound aldehyde dehydrogenase (ALDH) that are bound to the periplasmic side 4 

of the cytoplasmic membrane. The complete oxidation of EtOH occurs at cytoplasmic 5 

level by a NAD-ADH and NAD-ALDH. The AcOH produced  can be further utilized by 6 

acetyl CoA synthase and via TCA cycle (Fig. 1).  7 

The membrane-bound ADH and ALDH complexes are tightly linked to the 8 

respiratory chain, which transfers electrons via ubiquinone (UQ) and a terminal ubiquinol 9 

oxidase to oxygen as final electron acceptor [42]. ADH oxidizes EtOH to acetaldehyde, 10 

which is further oxidized to AcOH by ALDH as follows:  11 

CH3CH2OH + PQQ → CH3CHO + PQQH2 (alcohol dehydrogenase) 12 

CH3CHO + PQQ + H2O → CH3COOH + PQQH2 (aldehyde dehydrogenase) 13 

ADH of many AAB is composed by three subunits. Subunit I is the largest (72-78 kDa) 14 

and it is encoded in the adhA gene. It possesses a heme c and a pyrroloquinoline quinone 15 

(PQQ) as cofactors and requires Ca
2+

 to be active, according to the catalytic mechanism 16 

given by Anthony (1996) [43] and Goodwin and Anthony (1998) [44]. The subunit II 17 

which molecular size range from 44-45 kDa contains three heme c moieties and it is 18 

encoded in the adhB gene. The third and smallest subunit (20 kDa), encoded in the adhS, 19 

helps the two functional subunits with their association to the membrane protecting the 20 

catalytic subunit from proteolysis and it contribute to the correct conformation of the ADH 21 

complex for electron transport on the periplasmic surface [26, 45]. Oxidation of EtOH 22 

occurs at PQQ site that acts as two-electron redox mediator; electrons are initially 23 

transferred to UQ, which will be re-oxidized by a membrane-associated oxidase. 24 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 

8  

Eventually, oxygen is the final electron acceptor, resulting in formation of H2O and a 1 

proton motive force necessary for energy production through a membrane-bound ATPase.  2 

AAB possesses also an inactive form of ADH with the same subunit composition of the 3 

active form, but having 10 times lower Q-1 reductase activity. However, it exhibits an 4 

ubiquinol:ferricyanide oxidoreductase activity, an ethanol:Q-1 and ethanol: ferricyanide 5 

oxidoreductase activities. The ubiquinol:ferricyanide oxidoreductase activity is higher in 6 

the inactive ADH than in the active enzyme suggesting that it play a role for the regulation 7 

of redox levels of UQ/ubiquinol in the cytoplasmic membrane contributing to the 8 

functionality of AAB under acidic and high aeration conditions [45]. 9 

The ALDH complex of AAB is composed of two or three subunits of different molecular 10 

masse organized as an operon. It has been reported that the ALDH enzymes from A. aceti 11 

and Ga. europaeus contain three subunits, whereas two subunits were detected in G. 12 

suboxydans, A. rances, and A. polyoxogenes [1]. Its optimum pH is between 4 and 5, 13 

although it can catalyses the oxidation of acetaldehyde to acetate at lower pH values [46]. 14 

ALDH is sensitive to oxygen concentrations, and when these are low its activity decreases, 15 

accumulating acetaldehyde into the media. It is also more sensitive to the presence of 16 

EtOH than ADH [47]. 17 

Sugars  oxidation 18 

AAB are known to have a high oxidative ability against sugars, mainly glucose but also 19 

arabinose, fructose, galactose, mannitol, mannose, ribose, sorbose and xylose (Table 1) 20 

[48]. They can catabolize sugars through the cytoplasmic hexose monophosphate pathway 21 

(Warburg-Dickens pathway) [36]. The Entner-Doudoroff pathway occurs only in cellulose-22 

synthesizing Acetobacter and Gluconacetobacter strains, where it appears to be more 23 

active than the hexose monophosphate cycle [49].  24 
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The oxidative pentose-phosphate pathway was reported to be the most important route for 1 

phosphorylative breakdown of sugars and polyols to CO2 in G. oxydans. Therefore it was 2 

predicted that G. oxydans has the capability to take up and to channel many polyols, sugars 3 

and sugar derivatives into the oxidative pentose phosphate pathway: polyols are first 4 

oxidized by soluble dehydrogenases; these products and other ketoses and aldoses are 5 

further modified by isomerases and epimerases. Finally, the compounds are 6 

phosphorylated by specific or unspecific kinases forming intermediates of the oxidative 7 

pentose phosphate pathway [50]. 8 

 Acetobacter species can use sugars through the hexose monophosphate pathway and also 9 

through the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways [51]. Sugars are 10 

further metabolised to CO2 and H2O via the TCA pathway, which is not functional in 11 

Gluconobacter. Sugar is more preferred as carbon source by Gluconobacter than by 12 

Acetobacter because the species of this genus can obtain energy more efficiently by the 13 

metabolisation of the sugars via pentose phosphate pathway [48]. The most characteristic 14 

reaction is the direct oxidation of glucose into Glucono-δ-lactone, which is oxidized into 15 

gluconic acid. This reaction is particularly active in Gluconobacter growing at high 16 

concentrations of sugars. D-gluconate can be further oxidized to 2-ketogluconate and 2,5-17 

diketogluconate by the gluconate dehydrogenase and 2-ketogluconate dehydrogenase [52]. 18 

At industrial scale, massive gluconic acid production by G. oxydans requires high glucose 19 

concentrations, low pH and high aeration rate. The further oxidation to ketogluconic acids 20 

is potentially undesirable reaction when using Gluconobacter strains for gluconic acid 21 

production. Suppression of ketogluconates formation has been achieved performing 22 

processes at low pH values [53].   23 

 24 
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Sugar alcohols oxidation 1 

AAB can oxidize several sugar alcohols like glycerol to dihydroxyacetone (DHA), D-2 

mannitol to D-fructose, D- sorbitol to L-sorbose, D-arabitol to xylulose, D and meso-3 

erythritol to L-erythrulose [1, 7]. Particularly in winemaking, AAB can use glycerol as  4 

carbon source which is converted into DHA by the glycerol dehydrogenase; an enzyme 5 

bound with the cellular membrane inducing a high accumulation of DHA in the media. In 6 

wine, DHA can react with proline producing a "crust-like" aroma and it can bind SO2 7 

reducing its anti-microbial activity [36].  8 

In G. oxydans it was reported that oxidization of glycerol is catalized by the 9 

membrane-bound glycerol/sorbitol dehydrogenase. This quinoprotein is considered the 10 

main polyol-dehydrogenase of G. oxydans that exhibits a broad substrate specificity. It 11 

catalyzes the oxidation of D-sorbitol, gluconate, and glycerol to L-sorbose, 5 ketogluconate 12 

and DHA, respectively [54].  13 

In G. oxydans can oxidize glycerol by the enzyme glycerol/sorbitol dehydrogenase 14 

that is considered the major polyol-dehydrogenase with a broad substrate specificity. It 15 

catalyzes the oxidation of D-sorbitol, gluconate, and glycerol, producing L-sorbose, 5 16 

ketogluconate and DHA, respectively [54].  17 

The metabolic pathway of glycerol in A. pasteurianus, predicted from Ga. xylinus, showed 18 

that glycerol utilization is accompanied by the formation of DHA, cellulose, CO2, and 19 

small amounts of acetate. In this species, DHA phosphate from glycerol can be produced 20 

by two pathways, one is via DHA catalyzed by glycerol dehydrogenase and the other one 21 

is via glycerol 3-phosphate by glycerol kinase. The DHA phosphate may be converted to 22 

D-glyceraldehyde 3-phosphate by triosephosphate isomerase and thus enter into the 23 

gluconeogenesis pathway [27]. 24 
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Organic acid oxidation  1 

The ability of Acetobacter and Gluconacetobacter strains to oxidize AcOH (Fig 1) 2 

generating the so-called acetate overoxidation occurs via TCA cycle [42]. Other acids such 3 

as lactic, pyruvic, malic, succinic, citric, and fumaric are similarly metabolized. In contrast, 4 

strains of Gluconobacter do not have a functional TCA cycle because of deficiencies in the 5 

two key enzymes, alpha-ketoglutarate dehydrogenase and succinate dehydrogenase. 6 

Consequently, they are unable to metabolize AcOH and other organic acids. Although the 7 

optimum pH for the oxidation of organic acids by AAB is near 6.0, there is evidence that it 8 

occur at lower values (3.5 to 4.0). In vinegar, for instance, Acetobacter species exhibits a 9 

biphasic growth curve, where the first corresponds to an EtOH oxidation with AcOH 10 

production, and the second to an overoxidation [42].  11 

Several strains of Acetobacter and Gluconobacter, particularly strains of A. pasteurianus, 12 

can oxidize lactate to acetoin. Acetoin has a characteristic "butter-like" aroma and flavor 13 

occurring in spoiled wine [36]. 14 

 15 

Production of exopolysaccharides 16 

Dextrans, levans and cellulose are the main exopolysaccharides produced by AAB glucose 17 

metabolism [1]. Ga. xylinus species have been regarded as model system for the study of 18 

biochemistry and genetics of cellulose biogenesis. The rate of cellulose production in Ga. 19 

xylinus is proportional to the rate of cell growth, and the yield is dependent on the carbon 20 

sources. Activators for bacterial cellulose production are compounds like caffeine and 21 

related xanthines [1]. Ga. xylinus synthesizes a cellulose mat that covers the surface of the 22 

growth medium in static cultures, whereas round balls of cellulose are formed in shaking 23 

cultures. The key enzyme in cellulose synthesis by Ga. xylinus is the membrane bound 24 
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cellulose synthase which uses UDP-glucose as substrate. The pathway from glucose to 1 

cellulose consists of the following four enzymatic steps: 2 

Glucose → glucose-6-phosphate → glucose-1- phosphate → UDP-glucose → cellulose 3 

Cells of cellulose-producing AAB are entrapped in the polymer matrix, supporting the 4 

population at the liquid-air interface. This facilitates oxygen and nutrient supply, since the 5 

concentration of nutrients in the cellulose matrix is enhanced by its absorptive properties, 6 

in contrast to the surrounding aqueous environment. Aeration of cultures gives rise to the 7 

formation of spontaneous non-cellulose-producing mutants. Most Ga. xylinus and Ga. 8 

intermedius strains produce besides the water-insoluble cellulose also a water-soluble 9 

polysaccharide called “acetan,” a heteropolymer containing glucose, mannose, glucuronic 10 

acid and rhamnose in a molar ratio of 4: 1: 1: 1. Acetan formation seems to influence the 11 

degree of polymerization and crystallinity of the cellulose fibrils [55]. 12 

Production of exopolysaccharides especially cellulose from AAB seems to be a promising 13 

area of application because of the increasing need of pure cellulose in medical and 14 

engineering fields [18]. 15 

 16 

Conclusion  17 

AAB are food-associated microorgansims that have a long history in oxidative 18 

fermentation processes, where they are spoiling or beneficial organisms. The physiological 19 

uniqueness of AAB is due to their ability to partially oxidize carbon sources and 20 

quantitatively excrete the corresponding compounds in the surrounding media. This 21 

feature, besides vinegar, is exploited for the industrial production of a number of 22 

compounds from alcohols, sugar and sugar alcohols oxidation. Moreover they are 23 

considered promising for the production of the pure form of cellulose. Although the 24 
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valuable potential of AAB in biotechnological applications, their industrial exploitation is 1 

not full developed. 2 

Perspectives to enhance their role as biocatalysts include the availability of genetic stable 3 

strains and further advance on their metabolic potential, in order to obtain high carbon 4 

substrates conversion efficiency. 5 

 6 
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Table 1 Distinctive characteristics of acetic acid bacteria genera  1 

Characteristic G. A. Ga. Ac. As. K. Sw. Sa.  N. Gr.  Am. T. Ne. 

Production of AcOH + + + + − + + v (w/−) + v (w/−) + − − 

Oxidation of:              

Acetate to CO2 and H2O − + + + w w w − − w + − − 

Lactacte to CO2 and H2O − + + v (−/w) w w w w − + w − − 

Growth on 0.35% AcOH (pH 3.5) + + + + − + + − + nd + + − 

Growth in the presence of 1% KNO3 − − − + − − + nd − nd − − − 

Production of keto-d-gluconic acid from d-

glucose: 

             

2,5-diketo-d-gluconic acid v − v − − − nd nd nd nd − + nd 

5-keto-d-gluconic acid + v v − + + nd + + nd + + nd 

2-keto-d-gluconic acid + v v − + + nd + + nd + + nd 

Production of DHA from glycerol + v v − v + + − w − w + − 

Growth on methanol as carbon source − v − + − − − − − + vw − nd 

Production of water soluble brown 

pigment(s) 

v − v − − − + − − nd − + − 

Production of γ-pyrones from:              

d-glucose v − v nd − − nd nd nd nd nd nd nd 

d-fructose + − − nd v (+/w) v nd nd nd nd nd nd nd 

Acid production from:              

l-arabinose + v v + + + + + + nd nd nd nd 

d-arabinose + − − v + v nd − w nd nd nd nd 

d-xylose + v v + + + v + + − nd nd nd 

l-rhamnose − − − − v − − − w nd nd nd nd 

d-glucose + v + + + + + + + w nd nd nd 

d-galactose + v + + + + + + + nd nd nd nd 

d-mannose + v v + + + + + + nd nd nd nd 

d-fructose + − + − + − v v + nd nd nd nd 

l-sorbose + − v nd + − nd − − nd nd nd nd 

Melibiose + − − v + + nd + + nd nd nd nd 

Sucrose + − − − + v nd + + − nd nd nd 

Raffinose − − − − − + nd − + nd − w − 

d-mannitol + − v − v − − + w − − − − 

d-sorbitol + − − − v − + − + − − − − 

Table



 

 

 

 

2 2 

Dulcitol − − − − v − v − w − − − − 

Glycerol + − + + + + + − + v (w/−) w + − 

EtOH + + + + − + + − + + + + − 

Production of cellulose − − v − − − nd − nd nd nd nd nd 

Production of levan-like mucous substance(s) 

from sucrose 

− v − − − + nd − − nd − − − 

Growth in the presence of 30% d-glucose − v v + + − nd + + nd − + + 

Motility and flagellation N-m 

(mostly) 

or po 

N-m or 

pe 

N-m or 

pe 

N-m or 

pe 

N-m or 

pe 

N-m pe N-m N-m N-m pe N N 

Major ubiquinone Q10 Q9 Q10 Q10 Q10 Q10 Q10 Q10 Q10 nd Q10 Q10 Q10 

G + C content (mol%) 54–64 52–64 56–67 62–63 59–61 56–57 57–60 52–53 63.1 59 66.0 65.6 56.8 

Adapted from [24, 56, 57]. G.: Gluconobacter; A.: Acetobacter; Ga.: Gluconacetobacter; Ac.: Acidomonas; As.: Asaia; K.: Kozakia; Sw.: Swaminathania; Sa.: 1 
Saccharibacter; N.: Neoasaia; Gr.: Granulibacter; Am.: Ameyamaea; T: Tanticharoenia; N.: Neokomagataea. +: positive, −: negative, w: weak, v: variable, nd: not 2 
determined, N-m: non-motile, po: polar, pe: peritrichous. 3 
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Answers to Reviewers 

 

Thank you very much for all your comments and suggestions, stronghly contributed to improve the 

manuscript. Below a detailed response for each point raised out is provided. 

 

Reviewer #1:  

This review describes acetic acid bacteria focusing on their metabolism. It is a concise overview of 

the acetic acid bacteria involved in food fermentation, particularly vinegar production. 

A few things that should be considered to improve the review: 

 

- Emphasis on recent taxonomy (a lot of research has been done on AAB taxonomy in the last 5-10 

years) 

- Figure would be good (eg reaction of ethanol to acetic acid with the various enzymes) 

- Biotechnology needs to be expanded more  

- VBNC needs to be brought out more in the cultivation section  

- English expression and language  should be checked  

 

We have fully considered the criticisms raised out by the rewiever and accordingly the manuscript 

was revised.  

 

Recent taxonomy has been added to the paragraph “General characteristics” that in this new version 

of the manuscript has been renamed as follow:  

“General phenotypic characteristics and taxonomic aspects of acetic acid bacteria” 

As suggested, a figure (Fig.1) showing ethanol oxidation by ADH and ALDH and location within 

the cell has been added. 

 

Biotechnological applications of AAB has been expanded more (p. 2 lines 1-23).   

 

As suggested, the paragraph “Isolation and cultivability” was modified and VBNC concept  added 

(p.5, lines 11-15) 

 

The whole manuscript has been revised and a thoroughly English revision has been done.  

 

 

Specific comments: 

Abstract 

- use biotechnology rather than biotech 

The term was corrected 

 

P3, L7 - assigned rather than allocated 

Allocated has been replaced by “assigned” (p.3, line 13), as suggested. 

 

P3, L12 & 14  - write ethanol (EtOH) or acetic acid (AcOH) and then use abbreviation 

The correction has been done.  

 

P3, L23 - surface layer 

Superficial has been replaced by “surface” (p. 1, line 14) 

 

 

 

Authors' Response to Reviewers' Comments
Click here to download Authors' Response to Reviewers' Comments: answer-to reviewers.doc 

http://www.editorialmanager.com/injm/download.aspx?id=53772&guid=3433128b-53e6-4aff-a81f-441f846e4296&scheme=1
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P4, L1 - acetic acid production is not a fermentation 

The sentence was corrected:  

AcOH fermentation was replaced by “ AcOH production” 

 

P4, L5 - AAB are involved in these other food productions, not only implicated 

Implicated was replaced by involved, as suggested. 

 

Page 5 - what is the significance of 1996 in regards to these various foods and the bacteria 

isolations?  

The whole sentence was removed.  

 

Reference is needed for 'Early researchers....' 

The reference was added [35] : Dupuy P (1952) Recherche d'une technique d'isolement des 

Acetobacter du vin. Ann Technol Agric 1:107-112 (p.5. L.19) 

 

Page 6 L 10-15 - this section a few more sentences to explain these statements better.  

 

Lines 14-15: why the difference? Explain the significance between the two versions. 

 

To clarify, we removed the second part of the sentence: “Whereas previous edition of Bergey's 

Manual [25] recommended the use of a simple medium containing 0.5% yeast extract, 1.5% EtOH, 

and 2.5% agar.” 

In the new version of the manuscript, the sentence reports only the medium of the last version of 

bergey’s manual (p. 8, L: 5-9) “The last edition of Bergey's Manual of Systematic Bacteriology [1] 

proposed standard medium for enrichment and isolation of AAB, with the exception of Ga. 

europaeus (which strains are AcOH-dependent), containing: D-glucose, 0.05%; EtOH, 1.5%; yeast 

extract, 0.5%; peptone, 0.3%; cycloheximide, 0.01%; and agar, 0.12%.” 

 

 Page 7 L 6-11 - this whole section needs a bit of rearranging.  These lines should be at the start of 

the section 

 

The paragraph “Isolation and cultivation” was rearranged. The sentence was simplified and put at 

the start of paragraph “Isolation and cultivation of AAB strains, especially from fermented 

beverages, have been described to be problematic, giving rise to an underestimation of species 

richness when culture dependent methods are applied [31]”. 

 

 

Lines 6-14 - this needs to expanded to explain these observations and statements.  It is suggesting 

that now all bacteria are growing up/being cultivated. Is this viable but not culturable (VBNC). Or 

poor growth medium? Highlight the difficulties in cultivating AAB and all the AAB present. 

 

The section was rearranged as follow:  

 

p. 5, lines 11-17 “ Low recovery of strains due to the fraction of population that could reach a viable 

but non-culturable (VBNC) state has been stated. For instance in wine it was shown that VBNC 

status of spoiling AAB is induced by O2 deprivation [32]. Whereas in vinegars some studies 

developed by no culture approaches, such as PCR/DGGE, revealed higher species diversity respect 

to that detected by culturing methods [33, 34, 3].  

Limitations of culturing were in part overcame with the formulation of appropriate media, which 

allowed the cultivation of no growing strains or slow growing strains.” 
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Page 8 L 1-8 : it would be a good idea to have a figure here for the reaction and enzymes, their 

location .... . It is always beneficial in a review to have a figure. 

 

As suggested, a figure (Fig.1) showing ethanol conversion and location of enzymes within the cell 

has been added. The figure rapresents the ethanol oxidation to acetic acid by the membrane-bound 

ADH and ALDH and cytoplasmic respiration of ethanol.   

 

P9 L 15 - ... were present in the strain. ....  The genes were present, but was it shown that the 

pathways were functioning.  Genomics show that genes are present but do not confirm that 

reactions are occurring. 

 

The sentence was removed.  

 

P 10 L 7 - High in what sense? Concentration? Structure? 

P 10 L 9 - ..... wide range of applications. ..... This does not make sense or belong here. 

To avoid repetition the sentence (p.10, L.6-9) was removed.  

The sentence reported in the new version of manuscript is at page 9, lines: 14-18 

“The most characteristic reaction is the direct oxidation of glucose into Glucono-δ-lactone, which is 

oxidized into gluconic acid. This reaction is particularly active in Gluconobacter growing at high 

concentrations of sugars. D-gluconate can be further oxidized to 2-ketogluconate and 2,5-

diketogluconate by the gluconate dehydrogenase and 2-ketogluconate dehydrogenase [52].” 

 

 

P 10 L 14 - last sentence Is this important for high production of vitamin C? 

 

The sentence was removed.  

 

P 11 L 1-5 - another sentence or two to expand this concept would be beneficial for the reader. 

To clarify the sentence was rewritten as follow (p. 10, Lines 14-17): 

“In G. oxydans it was reported that oxidization of glycerol is catalized by the membrane-bound 

glycerol/sorbitol dehydrogenase. This quinoprotein is considered the main polyol-dehydrogenase of 

G. oxydans that exhibits a broad substrate specificity. It catalyzes the oxidation of D-sorbitol, 

gluconate, and glycerol to L-sorbose, 5 ketogluconate and DHA, respectively [54]. “ 

 

 

P 13 L 6-7: this sentence needs to be reworded and explained better. What has been reached? 

 

P 13 L 11 - sugared is not a good word here. Rewrite using high sugar content. 

 

In the new Conclusion section, the sentences were rewritten as follow:  

 

“AAB are food-associated microorgansims that have a long history in oxidative fermentation 

processes, where they are spoiling or beneficial organisms. The physiological uniqueness of AAB is 

due to their ability to partially oxidize carbon sources and quantitatively excrete the corresponding 

compounds in the surrounding media. This feature, besides vinegar, is exploited for the industrial 

production of a number of compounds from alcohols, sugar and sugar alcohols oxidation. Moreover 

they are considered promising for the production of the pure form of cellulose. Although the 

valuable potential of AAB in biotechnological applications, their industrial exploitation is not full 

developed. 
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Perspectives to enhance their role as biocatalysts include the availability of genetic stable strains 

and further advance on their metabolic potential, in order to obtain high carbon substrates 

conversion efficiency.” 

 

 

Table 1. 

In the legend write AAB in full.  At the top of the table, it would be much better to have at least 

abbreviations of the genera rather than numbers. It would make it much easier for the reader. 

 

AAB was replaced by acetic acid bacteria, as suggested.  

Number were replaced by abbreviations. 
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