1,807 research outputs found

    Wide-band SIW cavity-backed circular polarized array antennas with sequential rotation technique

    Full text link
    © 2016 IEEE. A circularly-polarized (CP) array antenna based on the substrate integrated waveguide (SIW) technology is proposed. The 2×2 linearly polarized SIW sub-arrays with 90° sequential rotation are employed as the radiating elements on the top layer. The sequential rotation technique is introduced to design SIW corporate-feed network on the bottom layer to realize wideband circular polarized characteristic. The network and the radiating elements of the array are both designed on close SIW structure with low cost printed circuit board (PCB) technology. The simulated results show that, the proposed 4×4 array has a large axial ratio (AR) bandwidth of 14% from 18.3 GHz to 21.1 GHz with a gain above 13 dBi

    Steps in the bacterial flagellar motor

    Get PDF
    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps [Sowa et al. (2005) Nature 437, 916--919]. Here we propose a simple physical model that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties, and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. Our model also predicts a sublinear torque-speed relationship at low torque, and a peak in rotor diffusion as a function of torque

    A semiconductor source of triggered entangled photon pairs?

    Full text link
    The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.Comment: 5 pages in pre-print format, 1 tabl

    Cavity Induced Interfacing of Atoms and Light

    Full text link
    This chapter introduces cavity-based light-matter quantum interfaces, with a single atom or ion in strong coupling to a high-finesse optical cavity. We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement intractably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Penile prosthesis implantation in Chinese patients with severe erectile dysfunction: 10-year experience

    Full text link
    We retrospectively evaluated the clinical outcome of penile prosthesis implantation (PPI) in Chinese patients with severe erectile dysfunction (SED). From July 2000 to December 2011, 224 patients (mean age: 35.9±11.8 years, range: 20–75 years) with SED underwent PPI by experienced surgeon according to standard PPI procedure at our centre. A malleable prosthesis (AMS 650) was implanted in 45 cases (20.1%), and a three-piece inflatable prosthesis (AMS 700 CXM or AMS 700 CXR) was implanted in 179 cases (79.9%). Surgical outcomes, including postoperative complications, clinical efficacy and couple satisfaction, were evaluated over than 6 months postoperatively using medical record abstraction, IIEF-5, quality of life (QoL) scores, and the patient/partner sexual satisfaction score proposed by Bhojwani et al. Of the 224 patients eligible for the study, 201 subjects (89.7%) completed follow-up. All of patients could perform sexual intercourse post PPI with the mean postoperative IIEF-5 and QoL scores were 20.02±2.32 and 5.28±0.76, respectively, which were significantly improved compared with the preoperative scores (6.29±1.5 and 2.13±0.84, P<0.01). Of the 201 men, mechanical malfunction occurred in four cases (2.0%) and three cases were re-implanted new device, and two cases (1.0%) developed a mild curvature of the penis. Scrotal erosion with infection occurred in one case with diabetes mellitus (0.5%) and required complete removal of the implanted AMS 700 CXM. Satisfactory sexual intercourse at least twice per month was reported by 178 men (88.6%), and overall satisfaction with the PPI surgery was reported by 89.0% of men and 82.5% of partners. Patient satisfaction in the three-piece inflatable prosthesis group was higher than in the malleable prosthesis group (P<0.05). Satisfaction, however, between the types of prostheses, did not differ in the partner survey. PPI is a safe and effective treatment option for Chinese patients with SED and experienced surgeon perform PPI according to standard PPI procedure could reduce the postoperative complications of PPI and could improve patient satisfaction ratio and QoL

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Control of Precursor Maturation and Disposal Is an Early Regulative Mechanism in the Normal Insulin Production of Pancreatic β-Cells

    Get PDF
    The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2+/Akita mice in response to a mutation (C96Y) in the insulin 2 (Ins2) gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO). Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER) and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (a)typical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis

    HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells

    Get PDF
    Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation. Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6-/-mice may provide a feasible model to study the role of human HerC5 in antiviral responses

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
    corecore