93 research outputs found

    Betrouwbaar naar gezonde uiers: ontrafelen celgetalgegevens levert uiergezondheidsindex met 85 procent betrouwbaarheid

    Get PDF
    Fokken op uiergezondheid kan betrouwbaarder, zo luidt de conclusie van nieuw onderzoek. Door de celgetalgegevens dieper te analyseren ontstaat een index met 85 % betrouwbaarheid, vergelijkbaar met fokwaarden in de zo geroemde Scandinavische landen. Stieren zullen op z'n vroegst in april 2009 een vernieuwde fokwaarde krijge

    Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers

    Get PDF
    Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 x 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response

    In Vivo Activation of the Intracrine Vitamin D Pathway in Innate Immune Cells and Mammary Tissue during a Bacterial Infection

    Get PDF
    Numerous in vitro studies have shown that toll-like receptor signaling induces 25-hydroxyvitamin D3 1α-hydroxylase (1α-OHase; CYP27B1) expression in macrophages from various species. 1α-OHase is the primary enzyme that converts 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Subsequently, synthesis of 1,25(OH)2D3 by 1α-OHase in macrophages has been shown to modulate innate immune responses of macrophages. Despite the numerous in vitro studies that have shown 1α-OHase expression is induced in macrophages, however, evidence that 1α-OHase expression is induced by pathogens in vivo is limited. The objective of this study was to evaluate 1α-OHase gene expression in macrophages and mammary tissue during an in vivo bacterial infection with Streptococcus uberis. In tissue and secreted cells from the infected mammary glands, 1α-OHase gene expression was significantly increased compared to expression in tissue and cells from the healthy mammary tissue. Separation of the cells by FACS9 revealed that 1α-OHase was predominantly expressed in the CD14+ cells isolated from the infected mammary tissue. The 24-hydroxylase gene, a gene that is highly upregulated by 1,25(OH)2D3, was significantly more expressed in tissue and cells from the infected mammary tissue than from the healthy uninfected mammary tissue thus indicating significant local 1,25(OH)2D3 production at the infection site. In conclusion, this study provides the first in vivo evidence that 1α-OHase expression is upregulated in macrophages in response to bacterial infection and that 1α-OHase at the site of infection provides 1,25(OH)2D3 for local regulation of vitamin D responsive genes

    A Staphylococcus xylosus isolate with a new mecC allotype

    Get PDF
    Recently, a novel variant of mecA known as mecC (mecA(LGA251)) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec

    Update on potential medical treatments for encapsulating peritoneal sclerosis; human and experimental data

    Get PDF
    Encapsulating peritoneal sclerosis (EPS) is an infrequent but serious complication of peritoneal dialysis (PD). The pathogenesis is unknown but speculation is ongoing. The current management of EPS focuses on prevention and treatment of the inflammatory and fibrotic changes at the level of the peritoneal membrane with immunosuppressive and antifibrotic agents, respectively. This article reviews the currently available human and animal data on potential agents to prevent and/or treat EPS. We propose a strategy for early diagnose EPS in an attempt to avoid the development of the full-blown and potentially life-threatening clinical syndrome of EPS. Future research should focus on studying potential prophylactic and therapeutic agents in humans in large, multicenter, randomized trials but also on early detection of EPS in the inflammatory phase by means of biomarkers and the establishment of a composite EPS score

    Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli

    Get PDF
    The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.Peer reviewe
    corecore