92 research outputs found

    Effects of retinoic acid on compensatory lung growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the effect of Retinoic acid in the growth of contralateral lung after pneumonectomy.</p> <p>Methods</p> <p>Twentyone adult male Wistar albino rats from the same colony were used. They were divided into three groups (Group A, B and C). Group A undergone only left posterolateral thoracotomy. In Group B and C, the rats were subjected to left posterolateral thoracotomy and left pneumonectomy. In Group C, rats were given intraperitoneal Retinoic acid during the operation and continued to be given everyday postoperatively. Rats were sacrificed on the 10<sup>th </sup>day and their total body, right lung weights and right lung volumes were measured.</p> <p>Results</p> <p>The volume and weight indices of the lung were found to be higher in Group C. In histopathological examination, there was a reduction in the mean number of alveoli in Group B and C. A significant rise in the mean dimension and average wall thickness of the alveolar structure were determined in Group C.</p> <p>Conclusion</p> <p>Retinoic acid contributes to the compensatory growth of the residual lung tissue.</p

    Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels

    Get PDF
    Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels
    corecore