13,248 research outputs found
Probabilistic analysis and comparison of stress-dependent rock physics models
A rock physics model attempts to account for the nonlinear stress dependence of seismic velocity by relating changes in stress and strain to changes in seismic velocity and anisotropy. Understanding and being able to model this relationship is crucial for any time-lapse geophysical or geohazard modelling scenario. In this study, we take a number of commonly used rock physics models and assess their behaviour and stability when applied to stress versus velocity measurements of a large (dry) core data set of different lithologies. We invert and calibrate each model and present a database of models for over 400 core samples. The results of which provide a useful tool for setting a priori parameter constraints for future model inversions. We observe that some models assume an increase in VP/VS ratio (hence Poisson’s ratio) with stress. A trait not seen for every sample in our data set. We demonstrate that most model parameters are well constrained. However, third-order elasticity models become ill-posed when their equations are simplified for an isotropic rock. We also find that third-order elasticity models are limited by their approximation of an exponential relationship via functions that lack an exponential term. We also argue that all models are difficult to parametrize without the availability of core data. Therefore, we derive simple relationships between model parameters, core porosity and clay content. We observe that these relationship are suitable for estimating seismic velocities of rock but poor when comes to predicting changes related to effective stress. The findings of this study emphasize the need for improvement to models if quantitatively accurate predictions of time-lapse velocity and anisotropy are to be made. Certain models appear to better fit velocity depth log data than velocity–stress core data. Thus, there is evidence to suggest a limitation in core data as a representation of the stress dependence of the subsurface. The differences in the stress dependence of the subsurface compared to that measured under laboratory conditions could potentially be significant. Although potentially difficult to investigate, its importance is of great significance if we wish to accurately interpret the stress dependence of subsurface seismic velocities
Pleistocene uplift and palaeoenvironments of Macquarie Island: evidence from palaeobeaches and sedimentary deposits
Macquarie Island (54°30'S, 159°00'E) is an emergent part of the Macquarie Ridge Complex composed of ocean-floor rocks of Miocene age now 4000 m above the ocean floor. A number of landforms, including palaeobeaches now above sea level (a.s.l.)on Macquarie Island, were formed by marine erosion during uplift of the island. During the last Pleistocene period of low sea level (c. 20 ka) the island was three times larger than now. Thermoluminescence (TL) dating of two palaeobeaches indicates Pleistocene ages: 172 ± 40 ka for one at 100 m a.s.l. and 340 ± 80 ka for another at 263 m a.s.l. Matching the altitude sequence of palaeobeaches on Macquarie Island with the pattern of peaks in world sea level determined from deep sea cores allows an independent estimate of beach ages. Comparison of the altitude and sea level sequences most plausibly places the 100 m palaeobeach in Oxygen Isotope Stage 5e (130-125 ka) and the 263 m palaeobeach
in Stage 9 (340-330 ka), matching reasonably with the TL dates. Other palaeobeaches at about 50 m and 170-190 m a.s.l. then correlate with high sea levels. We calculate an average rate of uplift forthe island of 0.8 mma-I . At this rate, 4000 m of Macquarie Ridge uplift would have taken about five million years and the top of the island may first have emerged some 700 to 600 ka. During the six Pleistocene glacial-interglacial cycles since then, there has been periglacial rather than glacial activity on cold uplands, but conditions suitable for vegetation of the present type persisted close to sea level
Are oxygen and sulfur atoms structurally equivalent in organic crystals?
New guidelines for the design of structurally equivalent molecular crystals were derived from structural analyses of new cocrystals and polymorphs of saccharin and thiosaccharin, aided by a computational study. The study shows that isostructural crystals may be obtained through an exchange of >C?O with >C?S in the molecular components of the solids, but only if the exchanged atom is not involved in hydrogen bonding
Prompting arm activity after stroke: a clinical proof of concept study of wrist-worn accelerometers with a vibrating alert function
Background: Frequent practice of functional movements after stroke may optimise motor recovery; however, it is challenging for patients to remember to integrate an impaired limb into daily activities. We report the activity responses of stroke patients receiving a vibrating alert delivered by a tri-axial accelerometer wristband to prompt movement of the impaired arm if hourly activity levels fell. Methods: Adults with upper limb impairment <= 28 days post-stroke wore the device for four weeks. Therapists and patients reviewed movement activity data twice weekly to agree ongoing rehabilitation activities and programme the wristband with a personalised prompt threshold (median baseline activity + 5%, 25% or 50%). Results: Seven patients completed the programme (five males; meanstandard deviation (age) 64 +/- 5 years; days post-stroke 13 +/- 7; baseline/four-week Action Research Arm Test median (Interquartile range (IQR)) 39 (8, 44)/56 (11, 57)). Wristbands were worn for 89% of programme duration. A total of 1,288 prompts were delivered, with a median of four (IQR 3,7) prompts per patient per day. Mean activity increases following a prompt ranged from 11% to 29%. Conclusions: Feedback delivered by a programmable accelerometer increased impaired arm activity. Improvements are required in device reliability before conducting a pragmatic clinical trial to examine the impact upon recovery.</p
The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle
The temperature anomalies in the Earth's mantle associated with thermal
convection1 can be inferred from seismic tomography, provided that the elastic
properties of mantle minerals are known as a function of temperature at mantle
pressures. At present, however, such information is difficult to obtain
directly through laboratory experiments. We have therefore taken advantage of
recent advances in computer technology, and have performed finite-temperature
ab initio molecular dynamics simulations of the elastic properties of MgSiO3
perovskite, the major mineral of the lower mantle, at relevant thermodynamic
conditions. When combined with the results from tomographic images of the
mantle, our results indicate that the lower mantle is either significantly
anelastic or compositionally heterogeneous on large scales. We found the
temperature contrast between the coldest and hottest regions of the mantle, at
a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over
2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001
Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in southern Africa
Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa
Exciton Condensation and Perfect Coulomb Drag
Coulomb drag is a process whereby the repulsive interactions between
electrons in spatially separated conductors enable a current flowing in one of
the conductors to induce a voltage drop in the other. If the second conductor
is part of a closed circuit, a net current will flow in that circuit. The drag
current is typically much smaller than the drive current owing to the heavy
screening of the Coulomb interaction. There are, however, rare situations in
which strong electronic correlations exist between the two conductors. For
example, bilayer two-dimensional electron systems can support an exciton
condensate consisting of electrons in one layer tightly bound to holes in the
other. One thus expects "perfect" drag; a transport current of electrons driven
through one layer is accompanied by an equal one of holes in the other. (The
electrical currents are therefore opposite in sign.) Here we demonstrate just
this effect, taking care to ensure that the electron-hole pairs dominate the
transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure
The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003
Many past studies of cosmological gamma-ray bursts (GRBs) have been limited
because of the large distance to typical GRBs, resulting in faint afterglows.
There has long been a recognition that a nearby GRB would shed light on the
origin of these mysterious cosmic explosions, as well as the physics of their
fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an
estimated rate of localisation of one every decade. Here, we report the
discovery of bright optical afterglow emission from GRB 030329. Our prompt
dissemination and the brilliance of the afterglow resulted in extensive
followup (more than 65 telescopes) from radio through X-ray bands, as well as
measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of
GRB 030329 are similar to those of cosmological GRBs (after accounting for the
small distance), making this the nearest known cosmological GRB. Observations
have already securely identified the progenitor as a massive star that exploded
as a supernova, and we anticipate futher revelations of the GRB phenomenon from
studies of this source.Comment: 13 pages, 4 figures. Original tex
N-body Models of Extended Clusters
We use direct N-body simulations to investigate the evolution of star
clusters with large size-scales with the particular goal of understanding the
so-called extended clusters observed in various Local Group galaxies, including
M31 and NGC6822. The N-body models incorporate a stellar mass function, stellar
evolution and the tidal field of a host galaxy. We find that extended clusters
can arise naturally within a weak tidal field provided that the tidal radius is
filled at the start of the evolution. Differences in the initial tidal
filling-factor can produce marked differences in the subsequent evolution of
clusters and the size-scales that would be observed. These differences are more
marked than any produced by internal evolution processes linked to the
properties of cluster binary stars or the action of an intermediate-mass black
hole, based on models performed in this work and previous work to date. Models
evolved in a stronger tidal field show that extended clusters cannot form and
evolve within the inner regions of a galaxy such as M31. Instead our results
support the suggestion many extended clusters found in large galaxies were
accreted as members of dwarf galaxies that were subsequently disrupted. Our
results also enhance the recent suggestion that star clusters evolve to a
common sequence in terms of their size and mass.Comment: 12 pages, 8 figures, accepted by MNRA
Decreasing intensity of open-ocean convection in the Greenland and Iceland seas
The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
- …
